Estudio de la variación del contenido de W en catalizadores de carburos en la Reacción de HDS de una molécula modelo.

Adriana Isabel Reyes de la Torre^a*, José Aaron Melo Banda^a, Ana María Mendoza Martinez^a, Rebeca Silva Rodrigo^a, Benjamin Portales Martinez^a, Nancy Patricia Díaz Zavala^a, Beatriz Escobar Morales^b

^a División de Estudios de Posgrado e Investigación del Instituto Tecnológico de Ciudad Madero, Juventino Rosas y Jesús Urueta S/N Col. Los Mangos, C. P 89440, Cd. Madero, Tamaulipas México. ^bInstituto Tecnológico de Cancún, Avenida Kabáh Km. 3 Col. Centro C.P. 77500 Cancún, Quintana Roo, México.

*E-mail airt22@hotmail.com

Recibido 16 noviembre 2013, Aceptado 21 diciembre 2013

Resumen

Se sintetizaron una serie de catalizadores de carburos bimetálicos de Ni-W soportados γ -Al₂O₃, mediante la técnica de Volpe y Boudart. Los óxidos de NiW, fueron preparados en relaciones atómicas. (Ni/Ni+M) = 0.1, 0.3, 0.5, 0.7 y 0.9, se utilizó como soporte alúmina comercial Criterion (HDS-281). Los metales se impregnaron mediante la técnica de humedad incipiente, solubilizando las sales mediante una solución amoniacal 4:1 (NH₄OH-H₂O), dicha solución contiene la sal de los metales a impregnar en la concentración deseada. Las sales utilizadas para la impregnación fueron el nitrato de níquel Ni(NO₃)₂.6H₂O y el metatungstato de amonio (NH₄)₆W₁₂O₃₉.H₂O, los materiales se secaron a 110 °C, posteriormente, se calcinaron a 500 °C. Los catalizadores fueron caracterizados estructuralmente mediante difracción de rayos-X, las propiedades texturales fueron determinadas mediante la técnica de fisisorción de nitrógeno, así también se determinó su acidez total. Los materiales fueron reducidos utilizando un flujo de H₂, durante una hora a 400 °C y, posteriormente, fueron evaluados en reacción de Hidrodesulfuración (HDS) de tiofeno en un reactor en U a presión atmosférica y 350 °C durante 5 horas. Los resultados mostraron que el catalizador de NiW/ γ -Al₂O₃ a una relación de 0.5, proporcionó la mejor reacción de HDS, de un 33.18 % de HDS/gr, superando así al catalizador comercial NiMoS/Al₂O₃ y la selectividad fue hacia el producto principal n-butano en un 100%.

Palabras clave: carburos, hidrodesulfuración, tiofeno, n-butano.

1. Introducción

El proceso de la hidrodesulfuración (HDS) de fracciones del petróleo es actualmente un proceso de hidrogenación específica y de purificación. La necesidad de explotar al máximo el valor potencial de diversas fracciones que no se habían tratado previamente, ha propiciado en los últimos años el desarrollo de nuevos esquemas de refinación.

El proceso usado para este propósito es la hidrodesulfuración, el cual es el tratamiento catalítico con hidrógeno para convertir los compuestos de azufre y ácido sulfhídrico. Posteriormente el H_2S se separa y se convierte a azufre elemental. Durante el proceso de HDS de los crudos pesados y residuos ocurre simultáneamente la hidrodesintegración [1]. El azufre se encuentra en forma de tioles, mercaptanos, sulfuros, disulfuros y tiofeno. El azufre de las fracciones pesadas desintegradas es tiofénico, aunque las fracciones correspondientes de destilación atmosférica pueden contener cantidades apreciables de azufre no tiofénico [2].

En la investigación de nuevos materiales catalíticos, se ha despertado un especial interés en la preparación de compuestos cerámicos como carburos de metales de transición con áreas específicas altas [3]. Estos materiales poseen una resistencia mecánica, y actividades catalíticas elevadas para su aplicación en procesos de hidrotratamiento, como en es el caso de la HDS [4]. Dentro de este tipo de nuevos materiales, los sólidos más estudiados son los carburos de molibdeno y tungsteno, por sus actividades similares a un catalizador comercial de NiMo/Al₂O₃ en reacciones de hidrotratamiento, especialmente en la HDN, inclusive para reacciones de hidrogenación de CO [5]. De hecho las propiedades catalíticas de los carburos están condicionadas por su forma estructural y su estequiometría. Se han estudiado carburos y nitruros monometálicos modificados por aditivos como el fósforo, y se encontró que la promoción del P aumenta la dispersión del metal, modifica la distribución y estabilización de los sitios ácidos y ellos permiten una buena hidrogenación y propiedades de HDT.

2. Metodología Experimental

Los óxidos de Ni-W soportados fueron preparados en relaciones atómicas: (Ni/Ni+M) = 0.1, 0.3, 0.5, 0.7 y 0.9, se utilizó como soporte la γ -Al₂O₃ de marca comercial Criterion (HDS-281). Los metales se impregnaron mediante la técnica de espreado en un sistema de rocío del soporte, solubilizando las sales mediante una solución de NH₄OH-H₂O, dicha solución contiene la sal del metal a impregnar en la concentración deseada. Las sales utilizadas para la impregnación fueron: nitrato niqueloso, y de amonio. Después de la impregnación, los materiales

NUÍMICA HOY HEMISTRY SCIE

se secaron desde 110 °C para finalmente ser calcinados hasta 500 ° C. Los óxidos precursores de metales de transición se colocaron en un reactor de cuarzo. El reactor fue colocado dentro de un horno tubular horizontal conectado a un controlador de temperatura programable, el cual monitorea la temperatura del horno, y mediante rampas de calentamiento dependiendo del metal a preparar, se redujeron en una atmósfera de NH₃ hasta formar un oxinitruro (≈550°C). Después de alcanzar esta temperatura se hizo pasar una mezcla de CH₄/H₂ a flujos variados hasta 700°C y se mantuvo el flujo en la temperatura final por espacio de 1 hora. Los carburos y nitruros finales fueron enfriados hasta temperatura ambiente, para finalmente ser pasivados en una mezcla de O₂/He (1% de oxígeno) para evitar la oxidación en masa del catalizador preparado. Los catalizadores fueron caracterizados en difracción de rayos-x usando un difractómetro BRUKER axs D8 ADVANCE, también se les determino sus propiedades texturales mediante fisisorción de nitrógeno (BET) así mismo también se les determino la acidez total. Los catalizadores fueron evaluados en reacciones de HDS de tiofeno en un reactor en U a presión atmosférica y 350° C, los materiales fueron activados previamente con un flujo de hidrógeno a 400° C por 1 hora.

3. Resultados y discusión

La figura 1 muestra los catalizadores de carburos de la serie de Ni-W soportados en γ -Al₂O₃ (criterion 281), los cuales se prepararon variando la relación atómica (Ni7Ni+M) = 0.1, 0.3, 0.5, 0.7 y 0.9, se pueden observar los picos característicos de la fase de W del plano (0 0 1) a 31.5°, en casi todas las muestras menos en la de relación de 0.1 y 0.5 la fase de W del plano (1 0 0) y (1 0 1) a 35.7°, 48.2° de la escala 2 θ , los presenta todas la muestras a excepción la de relación de 0.1.

Figura 1. Patrones de difracción de carburos bimetálicos de la serie de Ni-W soportados en en γ -Al₂O₃ (criterion 281).

La fase del soporte de alúmina fue identificada con la tarjeta 04-0872 de la J.C.P.D.S, cuyos picos se localizan en 38, 46, y 67 °C en la escala 2 θ , también se observa la presencia de óxido precursor alrededor de los 27° en la escala 2 θ en las muestras de NiWC-0.9, de NiWC-0.3, y de NiWC-0.5. En la tabla 1 se muestran propiedades estructurales de los catalizadores de carburos de Ni-W soportados en γ -Al₂O₃ obtenidos mediante la difracción de rayos-X.

Tabla	1.	Propiedades	estructurales	de	los	catalizadores	de
carburo	os d	e Ni-W/γ-Ab	D3,.				

	Tamaño de Cristal (Å)º							
Catalizador	(00	(10	(10	(11	(20	(31		
	1)	0)	1)	1)	0)	1)		
	WC	WC	WC	NiC	NiC	NiC		
NiWC/Al ₂		11		56				
O ₃ Rel 0.1								
NiWC/Al ₂	65	126	123	115				
O ₃ Rel 0.3								
NiWC/Al ₂		79		203	213	33		
O ₃								
Rel 0.5								
NiWC/Al ₂	84	126	142	182	218	61		
O3 Rel 0.7								
NiWC/Al ₂	72	149	167	303	278	147		
O ₃								
Rel 0.9								

Todos los materiales fueron analizados después de la pasivación realizada al final de la preparación. Como el oxígeno en la superficie de los catalizadores cubre parte del área determinada durante el análisis, es de esperarse que se disminuyan proporcionalmente al área original del soporte, aun a ciertas condiciones de pretratamiento manejadas durante el análisis en la determinación de áreas específicas y en otras propiedades estructurales.

La tabla 2 muestra los resultados obtenidos de área de los catalizadores de carburos de las series de NiW soportados. Como se puede observar se muestra un aumento del área específica conforme aumenta la concentración de tungsteno (fase activa) dado que el material tiene capacidades adsortibas semejantes al níquel, es capaz de crear una retención molecular de nitrógeno, creando así multicapas cuando se le determina las propiedades texturales, lo cual es muy congruente, con el área específica que cubren los metales al ser depositados sobre la superficie del soporte.

2-3.	í c · 1
	Area superficial
	(m^2/g)
	(11175)
Muestra	
γ -Al ₂ O ₃	298
NiWC/y-Al ₂ O ₃ Rel 0.1	237
NiWC/y-Al ₂ O ₃ Rel. 0.3	213
2-5	
NiWC/v-Al ₂ O ₃ Rel. 0.5	263
2-5	
NiWCy-Al ₂ O ₂ /Rel 0.7	162
111007 11203 101. 0.7	102
NiWC/y-Al ₂ O ₃ Rel. 0.9	140
203	

Tabla 2. Resultados de Áreas específicas de los catalizadores de carburos de Ni-W/γ-Al₂O₃

De hecho son pocos los estudios sobre la caracterización de estos sólidos mediante TPD-NH₃, pero se necesita evaluar la intensidad de la acidez presente en los materiales, por lo que se tomaron muestras representativas de la serie preparadas de Ni-W. En la tabla 3, se presentan los valores obtenidos de acidez total en (μ mol NH₃/g) y en (μ mol NH₃/m²) de los catalizadores de carburos bimetálicos de NiW soportados en γ -Al₂O₃ (Criterion comercial 281).

Tabla	3.	Acidez	total	de	los	carburos	bimetálicos	de	NiW
soporta	idos	s en γ-Al	2O3(C	rite	rion	comercial	281)		

Catalizador	Acidez μmol NH ₃ /g	Acidez μmol NH ₃ /m ²
NiWC/ γ-Al ₂ O ₃ Rel. 0.1	85	0.30
NiWC/γ-Al ₂ O ₃ Rel. 0.5	62	0.46
NiWC/ γ-Al ₂ O ₃ Rel. 0.7	139	0.60
NiMoS/Al ₂ O ₃	81	0.51

La figura 2 ilustra los resultados obtenidos de la evaluación de los catalizadores empelados en la reacción de HDS del tiofeno. Se puede observar que el catalizador industrial alcanza el estado pseudoestable a las 3 horas. Al principio de la reacción no mostraron actividad, hasta después de transcurrida la primera hora, con excepción del catalizador de NiW / γ -Al₂O₃ con una relación de 0.3 que desde un inicio mostró un poco de actividad catalítica, desactivándose a la primera hora de reacción. Por otro lado, el catalizador con una relación de 0.1 no mostró una actividad superior al de referencia, los catalizadores que superaron al industrial fue el de relación de 0.5 y 0.7.

Figura 2. Velocidades de reacción de los carburos de Ni-W soportados contra el catalizador industrial NiMoS/Al₂O₃.

La tabla 4 presenta los resultados de la conversión y la velocidad de reacción de los carburos de NiW y el porcentaje de HDS por g y por m^2 .

Tabla 4. Conversión y Velocidad de reacción de los carburos de								
la serie de Ni-W en la reacción de HDS del tiofeno.								
· · · · · ·	/	1	1					

	Área (m ² /g)	% HDS/g	% HDS/m ²	R _A Especifica	R _A (Intríseca)
Catalizador	< · 8/			(mol/g-s)	(mol/m ² -s)
$\begin{array}{c} \text{NiWC/} \\ \gamma\text{-Al}_2\text{O}_3 \\ \text{Rel. 0.1} \end{array}$	237	8.6	0.036	1.235E ⁻⁶	5.210E ⁻⁹
NiWC/ γ -Al ₂ O ₃ Rel. 0.5	263	33.1	0.126	5.458E ⁻⁵	2.075E ⁻⁷
NiWC/ γ-Al ₂ O ₃ Rel. 0.7	162	16.3	0.100	2.952E ⁻⁶	1.822E ⁻⁸
NiMoS/Al ₂ O ₃	207	16.7	0.080	2.122E ⁻⁶	1.025E ⁻⁸

Los productos de reacción de la hidrodesulfuración de HDS del tiofeno se distribuyeron de la siguiente manera en el cromatógrafo: primeramente se obtuvo la fracción de ligeros como el metano, etano y propano (C1-C3), posteriormente la fracción de n-butano, olefinas (-2 butenos, trans-2 buteno y 1 buteno) y finalmente se obtiene la fracción de tiofeno que no reacciono.

La figura 3 muestra los porcentajes de selectividad de los carburos de Ni-W soportados, podemos observar que todos los catalizadores son selectivos hacia la obtención del butano.

Figura 3. Porcentaje de Selectividad n-Butano de los carburos de Ni-W soportados.

4. Conclusiones

La presente investigación permitió correlacionar las propiedades y las condiciones estructurales con las condiciones de síntesis de los carburos de metales de transición Ni-W/ γ -Al₂O₃, aplicados en la Hidrodesulfuración del tiofeno. Las condiciones de síntesis utilizadas en la preparación de catalizadores de carburos de metales de transición de Ni-W, mediante la técnica de Volpe and Boudart permitió obtener la fases

QUÍMICA HOY CHEMISTRY SCIENC

catalizador comercial, además que presentó un mayor con los sulfuros. texturales en las propiedades catalíticas en comparación estructural [6] principalmente a las fases cristalinas y a su arreglo comportamiento catalítico de estos materiales se atribuye poder hidrogenante dado que los catalizadores de Ni-W removió un 33.18% HDS/gr, es decir 2 veces más que el catalizador industrial de sulfuro de NiMo/ Al2O3 ya que con relación de 0.5 presentó el mejor resultado que el acidez no fue causante de las propiedades catalíticas, ya disminuyeron debido al mayor contenido del metal. La del aumento de la concentración de W, ya que éstas específicas de la serie de Ni-W/y-Al2O3 fueron función de síntesis y de Ni-W segregadas debido al efecto de la temperatura fueron más selectivos hacia la obtención del butano. El En la hidrodesulfuración del tiofeno, el carburo de Ni-W que los materiales más activos presentaron menor acidez. la atmósfera de reducción. Las áreas ya que no infieren las propiedades

5. Agradecimientos

caracterización de los catalizadores por DRX. Al Instituto Tecnológico de Cancún por su apoyo en la

6 Referencias

- :--
- 35L. Volpe and M. Boudart, Journal of Solid State Chemistry, Vol. 59, No. 3, **1985**, pp. 332-347.
 Melo Banda J. A., Tesis de Doctorado, junio del 2000
 M. Vrinat, M. Breysse, C. Geantet, J. Ramirez and F. Mas- soth, "Effect of MoS2 Morphology on the HDS Activity of Hydrotreating Catalysts," Catalysis
- Activity of Hydrotreating Catalysts," Catalysis Letters, Vol. 26, No. 1-2, 1994, pp. 25-35
 4. J. S. Lee, T. Oyama and M. Boudart, Journal of Catalysis, Vol. 106, No. 1, 1987, pp. 125-133.
 5. Ramanathan and S. T. Oyama, The Journal of Physical Chemistry, Vol. 99, No. 44, 1995, pp. 16365-16372.
- 6. Reyes and Melo, Advances in Materials Physics and Chemistry, 2013, 3, 206-208

