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Abstract

Thermoluminescence (TL) is a property of some materials utilized to measure the radiation dose in a material exposed
to a radiation source for a period of time. Dosimeter is based in the measure of the light that a material emit when it is
heated after radiation. The TL response in a material can be derived by the band gap theory of solids. In this work, glow
curves are modeled following a deconvolution process using Gaussian curves sequentially. One by one, Gaussian
curves are added, and every time one is added, manual fitting is carried to provide an initial solution followed by
computer optimization. The process repeats until their contribution of new Gaussian curves in reducing the fitting errors
is no longer significant and the behavior of errors is considered stable. To illustrate the methodology, glow curves from
diamond like carbon are analyzed. The deconvolution method is carried and explained step by step until an acceptable
fit is found. In addition, a relatively simple linear prediction approach to perform interpolation is proposed and
discussed. Physical implications of the modeled phenomena of electrons traps are discussed for each deconvolution
peak and the corresponding energy levels are measured.
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L. Introduction

Thermoluminescence (TL), a phenomenon that some
materials exhibit, is the emission of light when a
material is heated after it was irradiated. Dosimeter is
an instrument that measures the radiation dose in a
material exposed to a radiation source for a period of
time. Dosimeter is based on the measurement of light
intensity that a material emits when it is heated [1-3].
TL response in a material can be derived by the band
gap theory of solids, in an ideal semiconductor or
electrical insulator crystal, electrons lies preferable in
the valence band, the next energetic band that can be
occupied by the electrons is the conduction band, both
bands are separated by the very known band gap,
diamond has a band gap up to 5.4 ev.

Radiant absorption energy bigger than Fermi
equilibrium line will produce the electron valence
ionization generating holes in the valence band and
free electrons in the conduction band [4]. In an
electrical insulator and semiconductor materials,
certain percentage of free charges lies trapping

between both bands, these free charges and trapping
electrons have different energy distribution, some
models for this have been proposed [5].

Diamond films synthesized from Chemical Vapor
Deposition (CVD) techniques, have been reported as
an excellent prospect for thermo luminescence
dosimeter involving ionizing and non ionizing
radiation fields [6-7].

The CVD diamond TL properties depend on the
physical chemical conditions of the precursor gas, and
there are unresolved problems for the reproducibility
and the homogeneity of the samples that must be
solved.

Despite the progress of CVD diamond growth from
gas mixtures, scarce work concerning the synthesis of
diamond using liquid organic compounds as
precursors by the pulsed liquid injection chemical
vapor  deposition  technique  assuring  good
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reproducibility of samples synthesis has been used as
TL dosimeter [8—9].

In this work, a simple deconvolution method is
presented and applied to model observations form light
intensity data of a dosimeter curve obtained directly
from the glow curve [10]. As a result, a model with an
acceptable fit was found, energy levels of electrons
traps are calculated, and prediction capability through
linear interpolation is discussed.

I1. Deconvolution procedure

In functional analysis, a convolution is an operation
between two functions to create a third one by
generalizing the concept of moving average. However,
in physics, a convolution process can be understood as
an application of the superposition principle, where the
net response at a given place and time is caused by the
sum of other individual stimuli. This way, in this
research, a deconvolution process is defined as a
mathematical method used to identify elementary
functions whose sum creates a new and more complex
function that represents the behavior of the
observations under analysis.

Glow curves in TL represent complex functions, and a
Deconvolution process can be used to find simple
functions that represent different traps of energy (glow
peaks) whose sum gives the glow curve under analysis.
One approach to model glow curves consist in using
existing probabilistic  distributions functions as
elementary functions. However, probability functions
cannot be used as they are. Normalizing constants have
to be taken out; otherwise the area under the curves
will always be 1. This way, only the kernel of a
probability distribution is used to fit the data. For
instance, the kernel of a normal function (Gaussian
function) is used as follows:

T—py ‘|: 1.
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where T is the temperature, £{ di controls the location
of the maximum of the function, & 4 controls the
scale, and H 4 1s added to control the high at

different dose ( d ) levels.

Where 7 is used as an index that runs from 1 to n to
enumerate the number of functions that are convoluted
together. Finally, # represents the number of
elementary functions within the convolution. (Eq 1)
can be used to create a superposition of functions to

model the behavior of the TL intensity / , at different

dose levels.

1,=c, +Zga‘:‘(TL“dr'!O-de"Hdi) (2)
il

where ¢q stands for a constant used to fit the data at
dose leveld . [, represent the TL intensity
estimated by the model.
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The process of Deconvolution consists on finding the
value of the constant, the right amount 71 elementary
functions, and their corresponding parameter values
that together creates a superposition of functions that
gives shape to the TL glow curve represented by the
collected data. To find the parameter values that give
the best fit, many loss functions can be used to be
minimized. One “common” lost function in nonlinear
modeling is the quadratic loss function. The
minimization of this function gives least squared
estimates of parameters. As long as no outliers are
found in the data, a quadratic loss function should be
capable of giving parameter values that best fit the
available observations. The loss function used in this
research was:

Ozi(fdf_jay)z )

J=
Here, the index j represents the individual

observations obtained at different ¢ levels. Since f dj
stands for the estimated intensity (fitted model), from
(Eq. 2), and 1 dj stands for the observed value, the

parameter values obtained are the ones that minimize
the cumulated square error between the model and the
data.

II1. Thermoluminiscense modeling of Carbon
like diamond

The modeling process follows five major phases, (1)
data gathering, (2) curve fitting, (3) verification, (4)
interpolation analysis, and (5) model interpretation.
Overall, the data gathering process was done through
the reconstruction of experimental results stored in a
computer image. Image pixels were studied to get the
coordinates of the plotted data. Curve fitting was done
via curve deconvolution. In total, five Gaussian curves
were added together to fit the data at every dose level
studied, from 100 Gray (Gy) to 1600.

Verification was carried by showing that errors around
each curve are homocedastic, stationary, and
independent enough to conclude that a good fit was
found. Additionally, to make results practical, TL
intensity can be predicted at any dose level within the
range studied by following a linear interpolation.
Finally, it is hypothesized that each Gaussian curve
represents individual energy traps that are released as
temperature increases for each dose level.

ITII-I Data gathering

Original data was not available, only an image from
the data remained as seen in Fig. 1. To recover the loss
information, a “forensic™ analysis of this image was
carried out. This analysis involved the recovery of
pixels coordinates of each data point within the figure
rescaled to fit the measures of each axis.
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Fig. 1. Image describing original experiments (from Morales
etal. [10])

It is evident that errors occur during the recovery
process. However, the major concern is not within the
individual values, but the average trend of the data,
which is more robust to small departures of the
individuals. Fig. 2 shows the result of this recovery
process, an image where each point can be overlapped
almost perfectly over the original ones. Variation
between original  observations and  extracted
coordinates is smaller than variation within
neighboring observations. Hence, it seems reasonable
to believe that the extraction process provides precise
enough observations for a curve fitting to be carried
away.
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Fig. 2. Recovered measurements from a “forensic™ data
analysis.

The modeling process makes use of the recovered
data to fit convoluted Gaussian curves capable of
emulating a large number of shapes within the range
of the data under analysis.

III-1I Curve Fitting and Verification

Fitting a superposition of several curves with many
parameters might lead to optimization problems due to
the existence of local optimal points. To avoid this
issue it is advisable to use graphical programs with
some understanding of the properties of the parameters
within each function. This way, a manual calibration
can be performed followed by a computerized search
for parameter values that minimize the loss function.
A multi-starting search procedure is desirable to have
when doing the fitting.

Also, as a principle, it seems reasonable to think that
the model should be as simple as possible.
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This reduces the risk of over parameterization, and
increases the possibilities for interpretation. Following
the routine described in Fig. 3, the modeling starts by
fitting (Eq. 2) with only one normal kernel until the
residuals within the model, defined in (Eq. 4), show a

homoscedastic behavior over the temperature f j and

fitted values I di with no signs of a trend that might

suggest dependency between errors, and scattered
around zero with no outlying observations. A scatter
plot between variables is enough to assess residuals in
most cases, however, some experience observing
residuals might be required.

ey =1,-1, )
| a"l':;"r';n Optimization ‘h
No

Add new

Fig. 3. Curve fitting and verification process

Manual calibration is addressed by adding one term
from (Eq. 2) at a time followed by a residual
inspection. When no terms have been added to the
model, it can be said that the residuals are the
observations themselves. To initialize the constant, the
overall minimum observed TL intensity can be used.
Then, the constant is subtracted from the data to get a
new set of residuals. After that, a new term is added,
which is a Gaussian function as described in (Eq. 1).
To initialize the Gaussian function it is necessary to
find a peak within the new observed residual data (if
no peak is found within the range of the residuals, it
can be mentally extrapolated), the temperature at the

peak selected defines ££ ;; , and the TL intensity at the

peak defines / 4i - To initialize &, , it is necessary to

keep in mind that the Gaussian function is a bell
shaped function, where each inflexion point is located

at T=ﬂdf- iO'd‘. with an  intensity of
I
H(ﬁe 2 0.6Hd‘,-. In other words, the initial

values of 0 ; can be obtained by the estimated half

width of the bell shape at 60% of the peak altitude.
Table 1 shows the initialization values manually
obtained for a dose of 1600 Gy using five Gaussian
functions. Plots of the curves being fitted and the
residuals over the temperature greatly help with the
visualization process. It can be seen in Fig. 4 that the
initial parameters values offer a marginal fit to the
data, mostly after temperatures of 200 °C where the
original data shows a more complex form. Fitting
issues are highlighted in the residuals plot presented in
Fig. 5.

Overall the residuals do not look homoscedastic and
trends are showing, clear signs of a lack of fit.
Nevertheless, this is only a manual fitting with
initialization parameters that serves as input for a
computerized optimization.
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Fig. 8. Summary of curve fitting process

As seen in Fig. 8, glow curve from a dose of 100 to
400 were fitted using four Gaussian functions, whereas
the rest (800 and 1,600 Gy) needed five. Residuals in
every curve look stationary with no evident trend,
which means they are fairly independent, giving
indication of a good fit. Only residuals from a dose of
100 present an increment in their dispersion, while the
rest look homocedastic. The increment in variation at
high temperature can be expected when realizing that
TL intensity at highest temperatures raise with a larger
slope than the rest small in temperature measurements
provoke large variation in TL intensity.

Ja y, I Al
Victor G. T ind V.

ITI-IIT Model interpolation

To make the model practical, it is convenient to have
an adequate interpolation method. One simple form of
interpolation is linear interpolation, where a desired

-

intensity / 4 18 predicted by using the predicted

intensity values obtained at temperature T at the
immediately higher and immediately lower doses

found in Fig. 2, called d high and d

The corresponding TL intensities for those dose values

low TESPECtively.

are Lo and j 7 Where the sub-index indicates

low,
the matching dose (high or low). This way, linear
interpolation can be performed using (Eq. 5).

f _ (dlu'gfr -d highT + (d - d!ow)I low, T
. d!n'g}r - d

)

low

For instance, if'a TL intensity need to be estimated for
a dose of 1,000 Gy and a temperature of 300 °C,
defined as 1 390 » then it is necessary to make use

of intensity values calculated using the parameters
shown in Fig. 2 for

-~

L yignz00 = Lisonz00 = 1158.68 and

IIow,BOD = 1800,300 =726.65. This lead to the
following interpolation:

I- (1600~ LOOOJL158.58 + (1,000 - BOO)726.65 _ 105058 (6)
1,600 800
Additionally, by using all fitted glow curves from Fig.
2 it is possible to regress a second or third degree
polynomial at the desired temperature in order to have
a better interpolation. However, to assume a specific
curvature between glow curves with only five
observations seems too risky, but it is up to the analyst
to decide. Finally, it is tempting to regress the
parameters presented in Table 2 with the different dose
levels in an attempt to unify all glow curves.
However, if one is up to that, individual fitting of glow
curves is lost, and no knowledge about possible gains
in interpolation precision exists.
Hence, this approach should be avoided unless data
between existing glow curves is obtained. Data
between dose levels is required to find the best
interpolation method.
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I11-1V Model interpretation by energy
measurements

The trap energy of the electrons were calculated with
the formula reported by Kitis et al, [11]. The values for
the trap are presented in the Table 3.

Table 3. Values trap energy and deconvolution parameters
for doses up to 1600 Gy,

Diose, Gy I 3
a3 6453 L7480 0550 =

s sam2 04777 atgaz sa0.850 naca

1o A6 36 06 01 A9h 657006 T8 50 1,669

san451 52101 uaa01 Gag 05 s7.157 s

= 22456 EERCTY 7528 53,60 T

201418 sas99 a7ase8 268301 se0.m5 50

e 411236 18535 &84386 51326 17045 2137

350501 16350 i 603496 61,585 e

1887 12995 EFE 69458 . 585 war

. 215,008 sa4a0 ann.156 201 358 24754 a2

FEEET 27080 706523 G5E480 734,55 1567

s40350 162373 13500 Ereern 1110436 o3

TaTam FiT atoan e w0 254

106485 e ey 102428 S350 wara

0 202595 59308 36085 A w131 B

151562 19326 5112 90226 539,35 1718

439435 7S 712385 G56288 7885 L350

a7 = FErEE T L =n

206507 e s Al 0% 553,011 e

160 1219 a3 e0saaz2 amssn an.226 el

351178 13551 eae126 00285 548,367 2005

423333 e sog433 e 603 2076

IV. Results and Discussion

Curve fitting was done through a process of
deconvolution of glow curves into a superposition of
Gaussian functions. Gaussian functions were added
until a good fit was found, which was evaluated
through residual analysis. The modeling process stops
when residuals present a random stationary behavior
around zero, and no important heterocedasticity or
trends were found. Curve fitting was achieved via
minimization of a least squared function.

It is important to notice that models that might fit glow
curves can be obtained from many different
approaches, and for each glow curve only a model is
presented, and not “the” model. For instance, high
degree polynomials and spline regression models as
the ones presented, [11] might fit data as good as the
functions used in this research—with the same
interpolation problems. However, when data is
deconvoluted to fit a linear superposition of functions,
physical explanations can be obtained. At least, the
underlying structure of the phenomena under analysis
can be hypothesized by the means of the superposition
principle.

In particular, Gaussian models and least squared
function are not the only means to deconvolute glow
curves into a superposition of functions. Kernels from
many other probability functions, such as Gamma,
Weibull, Gumbell, Gompetz, Lognormal, Burr and
Pearson family of distributions, to name a few, can be
superposed to fit glow curves. It is up to the analyst to
decide which ones to use. Most of the functions
mentioned are said to be flexible functions, since they
are capable of providing many shapes that might
facilitate the fitting of many concave functions.
However, these functions, except for the Gaussian
function, have their location (first moment) and spread
(second central moment) coupled by their parameters.
This characteristic makes Gaussian curves ideal for
manual fitting at early stages of the modeling, which
make the deconvolution process less dependent on
complex optimizations procedures to find acceptable
solutions.
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Least squared functions, as said before, are not the
only loss functions available to fit a linear or nonlinear
function. They are one of the most popular methods in
regression analysis, but they give the same weight to
every error term evaluated. If heterocedasticity is
present, a weighted least squared function can be used
if variability can be characterized through a specific
function.

Otherwise, robust regression might come in handy by
taking the absolute values of the error terms instead of
their squared values. Finally, if the proportion of the
error with respect to the TL intensity is important for
some reason, each error term within the objective
function to be minimized can be multiplied by the
reciprocal of the corresponding fitter value.

Many more approached can applied to fit glow curves
(minimax procedure for instance), however, the least
squared function used in this research is relatively
simple to use, and provided an acceptable fit to the
data, which makes the other approaches unnecessary
at the moment.

Glow curve fitting follows a nonlinear regression
analysis, which is known to struggle with optimization
challenges since the loss functions usually have
several local minima. It is difficult to known if the
global minimum was found by the algorithm used
during the optimization process. The analyst has to
resign himself to obtain a decent fit, which can be
evaluated via residual analysis. By the means of
manual fitting, an initial solution is provided, which
facilitates the search for the optimal. However, finding
the best fit overall might not be the objective for an
analyst, but to find a common structure of functions
that can provide a physical interpretation to the
phenomenon at hand. A strategy that can be explored
in a future analysis of glow curve fitting is to find
common structures between glow curves obtained at
different doses for the same material. This might be
achieved by replacing the parameters of each curve by
functions of the dose. Certainly, the task is not trivial
and will require higher computational power used by
clever optimization algorithms, but the idea of finding
a common structure instead of individual fitting for
each curve seems to be worth the effort. Physical
hypothesis of the underlying systems can be stated
with more confidence, and interpolation could be
improved in terms of precision.

V. Conclusion

In this work a method is presented step by step to make
the deconvolution of Thermoluminescence glow curve
for diamond thin films. With this method the number
of elemental functions for deconvolution are
determined  systematically by minimizing the
quadratic error. Each elemental function was
characterized by geometrical parameters such as the
translation, scale and the shape parameter. The value
of each energy trap was estimated employing
conventional equations and the geometrical
parameters of each function. For dose above 800 Gy a
second order kinetic is observed.
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The stepwise deconvolution method developed during
this research models glow curves independently.
However, since all observations come from the same
object, it should be possible to fit all curves at once by
coupling the corresponding parameters with the dose
level. This way, the behavior of each elemental curve
within the model can be tracked over the different dose
levels. As a result, deeper knowledge about the
underlying structured of energy traps can be obtained.
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