Hydrothermally synthesized nanoparticles of zinc peroxide and their structural description

Autores/as

  • A. García Ruiz Instituto Politécnico Nacional
  • A. Escobedo Benemérita Universidad Autónoma de Puebla
  • A. Aguilar Universidad Nacional Autónoma de México
  • R. Esparza Universidad Nacional Autónoma de México
  • R. Pérez Universidad Nacional Autónoma de México

DOI:

https://doi.org/10.29105/qh1.4-138

Palabras clave:

Nanostructured oxides, hydrothermal synthesis, crystal structure, X-ray diffraction (XRD), transmission electron microscopy (TEM), crystallite morphology

Resumen

The aim of this work is to present some results of the synthesis of nanoparticles of zinc oxide by means of a hydrothermal method. Also, a description of the structural characteristics of these nanoparticles will be presented. The nanoparticles can be used as the supported active phase for photocatalytic applications, as has been recently published in the literature. The hydrotbermal synthesis is based in dehydrated zinc acetate as the precursor using temperatures of 100ºC. The structural analysis of the obtained nanoparticles has been performed using X-ray diffraction techniques with a subsequent Rietveld refinement of the pattern. This allows obtaining refined values of the cell parameters and the approximate crystallite sizes (10-20 nm) and also gives an insight on the morphology of the nanoparticle (truncated cube). Some high resolution electron microscope images are also presented and their structural results are compared with those obtained through the X-ray diffraction studies.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

-[1] L. Ibarra, A. Marcos-Fernandez, M. Alzorriz, Polymer 43, 1649 (2002). DOI: https://doi.org/10.1016/S0032-3861(01)00734-0

-[2] L. Ibarra, J.Appl. Polym. Sci. 84,605 (2002). DOI: https://doi.org/10.1002/app.10313

-[3] S. Ohno, N. Aburatani,N. Ueda, DE Patent #2914058 (1980).

-[4] R. Hagel, K. Redecker, DE Patent #2952069 (1981).

-[5] M. Ceratelli, Zinc, Part 1. Fonderia (Milan) 43, 24 ( 1994).

-[6] M. Farnsworth, C.H. Kline, J.G. Noltes, Zinc Chem. 248 (1973).

-[7] D.A. Sunderland, J.S. Binkley, Radiology (Oak Brook, IL, United States) 35,606 (1940). DOI: https://doi.org/10.1148/35.5.606

-[8] W. Klabunde, P.L. Magill, J.S. Reichert, US Patent #2,304,104 (1942).

-[9] L. Rosenthal-Toib, K. Zohar, M. Alagem, Y. Tsur, Chem. Eng. J. 136,425 (2008). DOI: https://doi.org/10.1016/j.cej.2007.07.071

-[10] N.Uekawa, J.Kajiwara, N.Mochizuki, K.Kakegawa, Y. Sasaki, Chem. Lett. 7,606 (2001). -[11] C. C. Hsu, N. L. Wu, J. Photochem. Photobiol. A 172,269 (2005). DOI: https://doi.org/10.1246/cl.2001.606

-[12] M.Sun, W.Hao, C. Wang, T. Wang, Chem. Phys. Lett. 443,342 (2007). DOI: https://doi.org/10.1016/j.cplett.2007.06.098

-[13] Y.C. Zhang, X. Wu, X. YaHu, R. Guo, J. Cryst. Growth 280,250 (2005). DOI: https://doi.org/10.1016/j.jcrysgro.2005.03.001

-[14] T. Szabó, J. Németh, l. Dékány, Colloids Surf. A: Physicochem. Eng. Aspects 230,23 (2004).

-[15] M.L. Curridal, R. Comparelli, P.D. Cozzli, G. Mascolo, A. Agostiano, Mater. Sci. Eng. C23,285 (2003). DOI: https://doi.org/10.1016/S0928-4931(02)00250-3

-[16] V.P. Kamat, R. Huehn, R. Nicolaescu, J. Phys. Chem. B 106, 788 (2002). DOI: https://doi.org/10.1021/jp013602t

-[17] S.B. Park, Y.C. Kang, J.Aerosol Sci. 28, (1997). DOI: https://doi.org/10.1016/S0021-8502(97)85236-6

-[18] W.J.E. Beek, M. M. Wienk, R. A. J. Janssen, Adv. Funct. Mater. 16, 1112 (2006). DOI: https://doi.org/10.1002/adfm.200500573

-[19] Gleiter, H. ActaMater. 48, 1 (2000). DOI: https://doi.org/10.1016/S1359-6454(99)00285-2

-[20] W.Chen, Y.H. Lu, M. Wang, L. Kroner, H. Paul, H.-J. Fecht, J. Bednarcik, K. Stahl, Z. L. Zhang, U. Wiedwald, U. Kaiser, P. Ziemann, T. Kikegawa, C. D. Wu, J. Z. Jiang, J. Phys. Chem. C 113, 1320 (2009). DOI: https://doi.org/10.1021/jp808714v

-[21] D.C. Look, Mater. Sci. Eng.B 80,383 (2001). DOI: https://doi.org/10.1016/S0921-5107(00)00604-8

-[22] S.J.Pearton, D.P.Norton, K. Ip, Y.W. Heo, T.Steiner, Prog. Mater. Sci. 50,293 (2005). DOI: https://doi.org/10.1016/j.pmatsci.2004.04.001

-[23] M.N. Kamalasanan, S. Chandra, Thin Solid Films 288, 112 (1996). DOI: https://doi.org/10.1016/S0040-6090(96)08864-5

-[24] D. Jezequel, J. Guenot, N. Jouini, N.F. Fievet, J. Mater. Res. 10, 77 (1995). DOI: https://doi.org/10.1557/JMR.1995.0077

-[25] A.K. Chawla, D. Kaur, R. Chandra, Opt. Mater. 29,995 (2007). DOI: https://doi.org/10.1016/j.optmat.2006.02.020

-[26] K. Iwata, H. Tampo, A. Yamada, P. Fons, K. Matsubara, K. Sakurai, S. Ishizuka, S. Niki, Appl. Surf. Sci. 244,504 (2005). DOI: https://doi.org/10.1016/j.apsusc.2004.10.109

-[27] M. Izaki, T. Omi, Appl. Phys. Lett. 68,2439 (1996). DOI: https://doi.org/10.1063/1.116160

-[28] J. Rodríguez-Carbajal, Laboratoire Leon Brillouin (CEA-CNRS), France.

-[29] P. Thompson, D.E. Cox, J.B. Hasting. J. Appl. Crystallogr. 20,79(1987). DOI: https://doi.org/10.1107/S0021889887087090

-[30] R.A. Young, P. Desai. Arch. Nauki Mater. 10, 71 (1989).

-[3l] E.Prince. J.Appl.Crystallogr. 14, 157(1981). DOI: https://doi.org/10.1107/S0021889881009059

-[32] N.G. Vannerberg, Arkiv foer Kemi 14, 19(1959). -[33] A. Gomez, Micr. Re. Technol. 40, 37 (1998).

Descargas

Publicado

2011-09-30

Cómo citar

García Ruiz A., Escobedo, A., Aguilar, A., Esparza, R., & Pérez R. (2011). Hydrothermally synthesized nanoparticles of zinc peroxide and their structural description . Quimica Hoy, 1(4), 24–28. https://doi.org/10.29105/qh1.4-138