Zirconia sulfatada como un catalizador para la síntesis de biodiesel

Autores/as

  • J. S. Acevedo Universidad Autónoma de Nuevo León
  • F. J. Garza-Méndez Garza-Méndez Universidad Autónoma de Nuevo León
  • E.M. Sánchez-Cervantes Universidad Autónoma de Nuevo León
  • J. Aguirre-Espinosa Universidad Autónoma de Nuevo León

DOI:

https://doi.org/10.29105/qh4.1-23

Palabras clave:

Biodiesel, zirconia, microondas

Resumen

En este trabajo se sintetizaron nanopartículas de zirconia vía microondas, éstas se utilizaron como soporte de catalizadores sólidos. Se preparó hidróxido de zirconio por el método sol-gel a partir de propóxido de zirconio e hidróxido de amonio, una vez obtenido el gel se secó y se sometió a calentamiento por microondas y un enfriamiento rápido. La zirconia se sulfató con una solución de ácido sulfúrico y se utilizó como catalizador en la producción de biodiesel observando su actividad catalítica.

Las nanopartículas de zirconia obtenidas son de un tamaño de 50 a 60 nm con una mezcla de fases tetragonal y monoclínica, predominando la tetragonal, y un área superficial de 180.6 m2/g, esto se comprobó mediante difracción de rayos-X en polvos (DRX), microscopía electrónica de barrido (MEB) y la técnica Brunauer-Emmett-Teller (BET), uno de los logros principales fue que no se modificó el microondas y hubo mucho menos consumo de energía comparado con el método tradicional de calcinación, finalmente, se observó la conversión de aceite vegetal utilizado a biodiesel mediante la cromatografia de gases (CG), los rendimientos obtenidos son comparables con la sintesis de catálisis básica homogénea.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

-[1] Kinast, J. A.; Tyson, K. S., Production of biodiesel from multiple feedstocks and properties of biodiesel and biodiesel/diesel blends . Final report; NREL: Golden, CO, (2003). DOI: https://doi.org/10.2172/15003582

-[2] Ma, F. R.; Hanna, M. A., Biodiesel production: a review , Bioresour, Technol, 70, (1999), 1-15. DOI: https://doi.org/10.1016/S0960-8524(99)00025-5

-[3] Haas, M. J., The interplay between feedstock quality and esterification technology in biodiesel production , Lipid Technol, 16, (2004), 7-11.

-[4] Talley, P., Biodiesel , Render, (2004).

-[5] Graboski, M.S.; McCormick, R. L., Combustion of fat and vegetable oil derived fuels in diese! engines , Prog. Energy Combust. Se~ 24, (1998), 125-164. DOI: https://doi.org/10.1016/S0360-1285(97)00034-8

-[6] Zappi, M.; Hemandez, R.; Sparks, D.; Home, J.; Brough, M.; Arora, S. M.; Motsenbocker, W. D., A review of the engineering aspects of the biodiesel industry; Mississippi Biomass Council: Jackson , MS, (2003); p 71.

-[7] Canakci, M.; Van Gerpen, J., Biodiesel production via acid catalysis , Trans. ASAE, 42, (1999), 1203-1210. DOI: https://doi.org/10.13031/2013.13285

-[8] Canakci, M.; Van Gerpen, J., A pilot plant to produce biodiesel from high free fatty acid feedstocks , Trans. ASAE, 46, (2003 ), 945-954. DOI: https://doi.org/10.13031/2013.13949

-[9] Canakci, M.; Van Gerpen, J., Biodiesel production from oils and fats with high free fatty acids , Trans. ASAE, 44, (2001), 1429- 1436 DOI: https://doi.org/10.13031/2013.7010

-[10] Demirbas, A., Biodiesel fuels from vegetable oils via catalytic and noncatalytic supercritical alcohol transesterifications and other methods: a survey , Energy Convers. Manage, 44, (2003), 2093-2109. DOI: https://doi.org/10.1016/S0196-8904(02)00234-0

-[11] Tyagi B., Sidhpuria K., Shaik B., Jasra R.V., Synthesis ofnanocrystalline zirconia using solgel and precipitation techniques , Ind. Eng. Chem. Res., 45, (2006), 8643-8650. DOI: https://doi.org/10.1021/ie060519p

-[12] Leet M., Lin H., Thomas J.L., Synthesis of zirconia with nanoporous structure by a supercritical carbon dioxide microemulsion route , Intemational Joumal of Applied Ceramic Technology, 7, (2010), 874-880. DOI: https://doi.org/10.1111/j.1744-7402.2009.02399.x

-[13] Kazemi F., Saberi A., Malek-Ahmadi S., Sohrabi S., Rezaie H.R., Tahriri M., A novel method for synthesis of metastable tetragonal zirconia nanopowders at low temperatures , Ceramics Silikáty, 55, (2011), 26-30. DOI: https://doi.org/10.1016/j.materresbull.2011.06.010

-[14] Thitsartam W., Kawi S., Transesterification of oil by sulfated Zr-supported mesoporous silica , Ind. Eng. Chem. Res., 50, (2011), 7857-7865. DOI: https://doi.org/10.1021/ie1022817

-[15] Tyagi B., Sidhpuria K. B., Shaik B., Jasra R. V., Effect of Zr/Si molar ratio and sulfation on structural and catalytic properties of Zr0 2-SiO2 mixed oxides , J Porous Mater, 17, ~010), 699709. DOI: https://doi.org/10.1007/s10934-009-9341-0

-[16] Cao Y., Wei H., Xia Z., Advances in microwave assisted synthesis of ordered mesoporous materials , Trans. Nonferrous Met. Soc. China, 19, (2009), s656 - s664. DOI: https://doi.org/10.1016/S1003-6326(10)60127-6

-[17] Corma, A.; Rodriguez, M.; Sanchez, N.; Aracil, J., "Process for the selective production of monoesters of diols and triols using zeolitic catalysts , WO9413617, (1994).

-[18] Perez-Pariente, J.; Diaz, l.; Mohino, F.; Sastre, E., "Selective synthesis of fatty monoglycerides by using functionalised mesoporous catalysts , Appl. Catal., 254, (2003), 173-188. DOI: https://doi.org/10.1016/S0926-860X(03)00481-2

-[19] Yadav, G. D.; Nair, J. J., Sulfated zirconia and its modified versions as promising catalysts for industrial processes , Microporous Mesoporous Mater, 33, (1999), 1-48. DOI: https://doi.org/10.1016/S1387-1811(99)00147-X

-[20] Wang X., Zhao J., Hou X., He Q., Tang C., "Catalytic Activity of ZrQ Nanotube arrays

prepared by anodization method" , Joumal of Nanomaterials, (2012), 1-5. DOI: https://doi.org/10.1155/2012/409571

-[21] Srivas tava, A.; Prasad, R., "Triglycerides based diese] fuels" , Renewable Sustainable Energy Rev., 4, (2000), 111-133. DOI: https://doi.org/10.1016/S1364-0321(99)00013-1

-[22] Zhang, Y.; Dube, M. A.; McLean, D. D.; Kates, M., "Biodiesel production from waste coolmg oil: 1, Process design and technological assessment", Bioresour. Technol, 89, (2003), 1-16. DOI: https://doi.org/10.1016/S0960-8524(03)00040-3

-[23] Zhang, Y.; Dube, M. A.; McLean, D. D.; Kates, M., "Biodiesel production from waste cooking oil: 2, Economic assessment and sensitivity analysis" , Bioresour. Technol, 90, (2003), 229-240. DOI: https://doi.org/10.1016/S0960-8524(03)00150-0

-[24] Liu, K. S., "Preparation of FattyAcid Methyl Esters for Gas-Chromatographic Analysis of Lipids in Biological-Materials" , J. Am. Oil Chem Soc., 71, (1994), 1179-1187. DOI: https://doi.org/10.1007/BF02540534

-[25] Fukuda, H.; Kondo, A.; Noda, H., "Biodiesel fue! production by transesterification of oils" , J. Biosci. Bioeng, 92, (2001), 405-416. DOI: https://doi.org/10.1016/S1389-1723(01)80288-7

-[26] Lutecki M., Solcova O., Wemer S., Breitkopf C., "Synthesis and characterization of nanostructured sulfated zirconias" , J Sol-Gel Sci Technol, 53, (2010), 13 20. DOI: https://doi.org/10.1007/s10971-009-2045-8

-[27] Tyagi B., Mishra M. K., Jasra R.V., "Solvent free synthesis of acetyl salicylic acid over nanocrystalline sulfated zirconia solid acid catalyst", Joumal of Molecular Catalysis A: Chemical, 317, (2010), 41 45. DOI: https://doi.org/10.1016/j.molcata.2009.10.019

-[28] Saravanan K., Tyagi B. Bajaj H. C., "Esterification of caprylic acid with alcohol over nano-crystalline sulfated zirconia", J SolGel Sci Technol, 62, (2012), 13 17. DOI: https://doi.org/10.1007/s10971-011-2671-9

-[29] Melo Junior C. A. R., t Albuquerque C. E. R., t Cameiro J. S. A., t Dariva C., t Fortuny M.,t Santos A. F., t Egues S. M. S, t Ramos A. L. D., "Solid-acid-catalyzed esterification of oleic acid assisted by microwave heating", Ind. Eng. Chem. Res., 49 (2010), 12135 -12139. DOI: https://doi.org/10.1021/ie100501d

-[30] Freedman, B.; Pryde, E. H.; T. L., M., "Variables affecting the yields of fatty esters from transesterified vegetable oils", J. Am. Oil Chem. Soc., 61, (1984), 1638-1643. DOI: https://doi.org/10.1007/BF02541649

-[31] Rattanaphra D., Harvey A., Srinophakun P., "Simultaneous conversion of triglyceride/free fatty acid mixtures into biodiesel using sulfated zirconia ", Top Cata), 53, (2010), 773-782. DOI: https://doi.org/10.1007/s11244-010-9463-2

-[32] Srinivasan R., De Angelis R. J., Ice G., Davis B. H., "Identification of tetragonal and cubic structures of zirconia using synchrotron x-radiation source", J. Mater. Res., 6, (1991),1 287-1292. DOI: https://doi.org/10.1557/JMR.1991.1287

Descargas

Publicado

2014-03-31

Cómo citar

Acevedo, J. S. ., Garza-Méndez, . F. J. G.-M., Sánchez-Cervantes , E. ., & Aguirre-Espinosa , . J. . (2014). Zirconia sulfatada como un catalizador para la síntesis de biodiesel. Quimica Hoy, 4(1), 23–29. https://doi.org/10.29105/qh4.1-23

Número

Sección

Artículos