Synthesis of 3-hexylthiophene derived semiconductor polymers and composites with nanoparticles

Autores/as

  • Edgar Vaquera Universidad Autonoma de Nuevo León
  • Arturo Caballero Universidad Autonoma de Nuevo León
  • Fernanda Retana Universidad Autonoma de Nuevo León
  • Susana López Cortina Universidad Autonoma de Nuevo León
  • Thelma Serrano Universidad Autonoma de Nuevo León

DOI:

https://doi.org/10.29105/qh11.04-306

Palabras clave:

polymer, semiconductor, aldol condednsation

Resumen

The monomer 3-hexylthiophen-2,5-dicarboxaldehyde was synthetized from precursor 3-hexylthiophene by VilsmeierHaack reaction. Three p-type semiconductor polymers (PHT-P, PHT-B and PHT-H) were synthetized by aldol condensation from this monomer with three different ketones (propanone, butanone and hexanone). Three composites were created by adding PbS/ZnS nanoparticles to these polymers. Light absorption increased to the red from polymers to composites. Electrical conductivity increased from 10% S/cm in polymers to 10! S/cm in composites.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

- [1.] Cabriales, G. € González, G. Nuevo material luminiscente para dispositivos optoelectrónicos. Ingenierías. 2004, vilQ4), 6-11. http://ingenierias2.uanl.mx/77/index.html

- [2.] Dai, L. Intelligent Macromolecules for Smart Devices: From Materials Synthesis to Device Applications; Springer; 2004; pp 41-43. DOI: https://doi.org/10.1007/b97517

https://doi.org/10.1007/1-85233-849-0_2 DOI: https://doi.org/10.1007/1-85233-849-0_2

- [3.] Spanggaard, H. and Krebs, F.C. (2004) A Brief History of the Development of Organic and Polymeric Photovoltaics. Solar Energy Materials and Solar Cells,83, 125-146. DOI: https://doi.org/10.1016/j.solmat.2004.02.021

- [4.] http://dx.doi.org/10.1016/;.solmat.2004.02.02

- [S.] Reiss, P., ef al. Nanoscale. 2011, 3, 446-489. https://doi.org/10.1039/C0NR00403K DOI: https://doi.org/10.1039/C0NR00403K

- [6.] Cordovilla, C., ef al. ACS Catal. 2015, 5 (5), 3040-3053. https://doi.org/10.1021/acscatal.5b00448 DOI: https://doi.org/10.1021/acscatal.5b00448

- [7.] Pourjafari, D.; Vazquez, A.; Cavazos, J.; Gomez, I. Soft Materials. 2014, 12, 380-386. https://doi.org/10.1080/1539445X.2014.934842 DOI: https://doi.org/10.1080/1539445X.2014.934842

- [8.] Baskar, R., ef al. RSC Advances. 2013, 3, 17039-17047. https://doi.org/10.1039/C3RA42424C DOI: https://doi.org/10.1039/c3ra42424c

- [9.] Manouras, T. £ Vamvakaki, M. Polymer Chemistry. 2017, 8, 74-96. https://doi.org/10.1039/C6PY01455K DOI: https://doi.org/10.1039/C6PY01455K

- [10.] Huang, X., ef al. J, Mater. Chem. 2012, 22, 22488-22495. https://doi.org/10.1039/C2JM34340A DOI: https://doi.org/10.1039/c2jm34340a

- [11.] Bao, Z., et al. Appl. Phys. Lett. 1996, 69(26), 4108-4110. https://doi.org/10.1063/1.117834 DOI: https://doi.org/10.1063/1.117834

- [12.] Boucle, J., ef al. J. Mater. Chem. 2007, 17, 3141-3153. DOI: 10.1039/0706547g DOI: https://doi.org/10.1039/b706547g

- [13.] Xu, T. € Qiao, Q. Energy $ Environmental Science. 2011, 4, 2700-2720. https://doi.org/10.1039/C0EE00632G DOI: https://doi.org/10.1039/c0ee00632g

-[14.] Mohd-Nasir, S. N. F., ef al. International Journal of Photoenergy. 2014, 370160. https://doi.org/10.1155/2014/370160 DOI: https://doi.org/10.1155/2014/370160

- [15.] Vapaavuori J et al. J. Mater. Chem. C, 2018,6, 2168-2188. https://doi.org/10.1039/C7TC05005D DOI: https://doi.org/10.1039/C7TC05005D

- [16.] Han, S., ef al. The Solid Films. 2015, 576, 38- 41. https://doi.org/10.1016/;.tsf.2014.12.025 DOI: https://doi.org/10.1016/j.tsf.2014.12.025

-[ 17] Pan X et al. Chem. Soc. Rev., 2018,47, 5457- 5490. https://do1.org/10.1039/C8CS00259B DOI: https://doi.org/10.1039/C8CS00259B

- [18.] Seoyoung Kim, Doyoung Lee, Jungho Lee, Yongjoon Cho, So-Huei Kang, Wonbin Choi, Joon Hak Oh, Changduk Yang. Diazapentalene-Containing Ultralow-Band-Gap Copolymers for High-Performance Near-Infrared Organic Phototransistors. Chemistry of Materials 2021, 33 7499-7508. https://doi.org/10.1021/acs.chemmater.1c02409 DOI: https://doi.org/10.1021/acs.chemmater.1c02409

- [19.] Mooney M et al. J. Mater. Chem. C, 2020,8, 14645-14664. https://doi.org/10.1039/D0TC04085A DOI: https://doi.org/10.1039/D0TC04085A

- [20.] González, V., Arias, E. y Esquivel, E. Relación estructura—luminiscencia en aductos de condensación aldólica, Ingenierías. 2007, X(34), 69-75.

- [21.] Ando, W., et al. Science of Synthesis: HoubenWeyl Methods of Molecular Transformations, Vol. 9: Fully Unsaturated Small-Ring Heterocycles and Monocyclic Five-Membered Hetarenes with One Heteroatom. Editor Georg Thieme Verlag, 2014; pp 351. TN RA RENE IIA ESA

- [22.] Murad, A.R., Iraqi, A., Aziz, S.B., Abdullah, S.N., Brza, M.A. Polymers 2020, 12(11), 2627; https://doi.org/10.3390/polym12112627. DOI: https://doi.org/10.3390/polym12112627

- [23.] Nalwa, _H.S. Handbook of Advanced Electronic and Photonic Materials and Devices: Liquid crystals, display and laser materials. Vol. 7. Academic Press, 2001; pp 47-48.

- [24.] Cheng, Y.J., Yang, S.H., y Hsu, C.S. (2009). Synthesis of conjugated polymers for organic solar cell applications. Chemical Reviews, 109(11), 5868- 5923. https://doi.org/10.1021/cr900182s. DOI: https://doi.org/10.1021/cr900182s

Descargas

Publicado

2022-12-13

Cómo citar

Vaquera, E., Caballero, A., Retana, F., López Cortina, S., & Serrano, T. (2022). Synthesis of 3-hexylthiophene derived semiconductor polymers and composites with nanoparticles . Quimica Hoy, 11(04), 10–18. https://doi.org/10.29105/qh11.04-306