Desarrollo de una Ruta Alternativa para Obtención de Titanio Elemental de Mineral de Titanio

Authors

  • Armando Verduzco Universidad Autónoma de Nuevo León
  • Idalia Gomez Universidad Autónoma de Nuevo León
  • Lorena Garza Universidad Autónoma de Nuevo León
  • José Luis Cavazos Universidad Autónoma de Nuevo León

DOI:

https://doi.org/10.29105/qh11.04-314

Keywords:

reductor, subóxidos, titanio elemental, aleación

Abstract

Se mantuvo TiO, con estructura cristalina de rutilo de 94% de pureza en un medio altamente reductor a diferentes condiciones de
temperatura, presión, tiempo y relación de reactantes en atmósfera de helio, el producto obtenido se caracterizó por difracción de rayos X (XRD), microscopía electrónica de barrido (SEM) y microanálisis por energía dispersiva (EDS), logrando un producto con 89.1% de titanio, 3.4% de alúmina, proveniente del TiO, utilizado y subóxidos de titanio como subproducto, los cuales se separar por flotación. Se realizó otro grupo de experimentos utilizando MgCl, y el producto obtenido fue caracterizado por XRD, en donde se aprecian señales correspondientes a la aleación AlTi3. 

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Armando Verduzco, Universidad Autónoma de Nuevo León

Facultad de Ingeniería Mecánica y Eléctrica, Av. Universidad S/N, Cuidad Universitaria, 66455, San Nicolás de los Garza, Nuevo León, MEXICO.

Idalia Gomez, Universidad Autónoma de Nuevo León

Facultad de Ingeniería Mecánica y Eléctrica, Av. Universidad S/N, Cuidad Universitaria, 66455, San Nicolás de los Garza, Nuevo León, MEXICO.

Lorena Garza, Universidad Autónoma de Nuevo León

Facultad de Ingeniería Mecánica y Eléctrica, Av. Universidad S/N, Cuidad Universitaria, 66455, San Nicolás de los Garza, Nuevo León, MEXICO.

José Luis Cavazos , Universidad Autónoma de Nuevo León

Facultad de Ingeniería Mecánica y Eléctrica, Av. Universidad S/N, Cuidad Universitaria, 66455, San Nicolás de los Garza, Nuevo León, MEXICO.

References

-[1] Lakshmanan, V. IL, Roy, R., € Halim, M. A. (2016). Innovative Process for the Production of Titanium Dioxide. In Innovative Process Development in Metallurgical Industry (pp. 359-383). Springer International Publishing. DOI: https://doi.org/10.1007/978-3-319-21599-0_18

-[2] Encyclopedia Salvat of Science and Technology PDF volume 13. 1984.

-[3] Kumar, S. G., £ Rao, K. K. (2014). Polymorphic phase transition among the titania crystal structures using a solutionbased approach: from precursor chemistry to nucleation process. Nanoscale. DOI: https://doi.org/10.1039/C4NR01657B

-[4] Roskill information serves: Global supply of titanium is forecast to increase PRNewswire.

-[5] Esteban, P. G., Bolzoni, L., Ruiz-Navas, E. M., 8 Gordo, E. (2011). Introducción al procesado pulvimetalúrgico del titanio. revISTA de MeTALUrglA.

-[6] Gázquez, M. J., Bolivar, J. P., Garcia-Tenorio, R., € Vaca, F. (2014). A review of the production cycle of titanium dioxide pigment. Materials Sciences and Applications. DOI: https://doi.org/10.4236/msa.2014.57048

-[7] Davis, K. A. (1982). Titanium dioxide. J. Chem. Educ.

-[8] Nagesh, C. R., Sitaraman, T. S., Ramachandran, C. S., « Subramanyam, R. B. (1994). Development of indigenous technology for production of titanium sponge by the Kroll process. Bulletin of Materials Science.

-[9] Zhang, Z., Lu, X., Yang, S., £ Pan, F. (2012). Preparation of anhydrous magnesium chloride from magnesia. Industrial « Engineering Chemistry Research. DOI: https://doi.org/10.1021/ie300765u

-[10] Fang, Z. Z., Middlemas, S., Guo, J., € Fan, P. (2013). Anew, energy-efficient chemical pathway for extracting Ti metal from Ti minerals. Journal of the American Chemical Society.

-[11] Chemical of the month, the culver academies, Journal of Chemical Education Volume 59 Number 2 February 1982. Kathleen A. Davis, Titanium Dioxide, American Chemical Education, 1982. DOI: https://doi.org/10.1021/ed059p158

-[12] Nagesh, C. R., Sitaraman, T. S., Ramachandran, C. S., $Subramanyam, R. B. (1994). Development of indigenous technology for production of titanium sponge by the Kroll process. Bulletin of Materials Science. DOI: https://doi.org/10.1007/BF02757594

-[13] Centeno-Sánchez, R. L., Fray, D. J., £ Chen, G. Z. (2007). Study on the reduction of highly porous TiO2 precursors and thin TiO2 layers by the FFC-Cambridge process. Journal of materials science. DOI: https://doi.org/10.1007/s10853-007-1588-8

-[14] Liu A. et al. (2015) Preparation of Al-Ti Master Alloys by Aluminothermic Reduction of TiO, in Cryolite Melts at 960*C. In: Jiang T. et al. (eds) 6” International Symposium on High- Temperature Metallurgical Processing. Springer, Cham. DOI: https://doi.org/10.1002/9781119093381.ch31

-[15] Eshed, M., Irzh, A., € Gedanken, A. (2009). Reduction of Titanium Dioxide to Metallic Titanium Conducted under the Autogenic Pressure of the Reactants. Inorganic chemistry. DOI: https://doi.org/10.1021/ic900087c

-[16] Wan, H. L., Xu, B. O., Dai, Y. N., Yang, B., Liu, D. C., « Sen, VW. (2012). Preparation of titanium powders by calciothermic reduction of titanium dioxide. Journal a Central South University. DOI: https://doi.org/10.1007/s11771-012-1293-x

-[17] Fang, Z. Z., Middlemas, S., Guo, J., £ Fan, P. (2013). Anew, energy-efficient chemical pathway for extracting Ti metal from Ti minerals. Journal of the American Chemical Society. DOI: https://doi.org/10.1021/ja408118x

-[18] Tang, C., Yu, X., Chen, J., Han, O., € Liu, K. (2016). Preparation of titanium by electrochemical reduction of titanium dioxide powder in molten SrCl 2-KCI. Journal of Alloys and Compounds. DOI: https://doi.org/10.1016/j.jallcom.2016.05.206

-[19] Esteban, P. G., Bolzoni, L., Ruiz-Navas, E. M., € Gordo, E. (2011). Introducción al procesado pulvimetalúrgico deltitanio. revISTA de MeTALUreglA. DOI: https://doi.org/10.3989/revmetalmadrid.0943

-[20] Robino, C. V. (1996). Representation of mixed reactive gases on free energy (Ellingharn-Richardson) diagrams. Metallurgical and materials Transactions. DOI: https://doi.org/10.1007/BF02915078

-[21] Miller, D. N., Azad, A. K., Delpouve, H., Quazuguel, L., Zhou, J., Sinha, A., ... « Irvine, J. T. (2016).Studies on the crystal structure, magnetic and conductivity properties of titanium oxycarbide solidsolution (TiO l> x C x). Journal of Materials Chemistry A. DOI: https://doi.org/10.1039/C6TA00042H

-[22] Gong, Y., € Zhou, M. (2008). Matrix infrared spectra and density functional calculations of TiO3 and TiO5 in solid argon. The Journal of Physical Chemistry. DOI: https://doi.org/10.1021/jp805495d

-[23] Denker, S. P. (1966). Electronic properties of titanium monoxide. Journal of Applied Physics. DOI: https://doi.org/10.1063/1.1707796

-[24] Xu, B., Sohn, H. Y., Mohassab, Y., £ Lan, Y. (2016). Structures, preparation and applications of titanium suboxides. RSC Advances. DOI: https://doi.org/10.1039/C6RA14507H

-[25] Wang, D., Huang, C., He, J., Che, X., Zhang, H., € Huang, F. (2017). Enhanced Superconductivity in Rock-Salt TiO. ACS Omega. DOI: https://doi.org/10.1021/acsomega.7b00048

-[26] Liu A. et al. (20135) Preparation of Al-Ti Master ÁAlloys by Aluminothermic Reduction of TiO, in Cryolite Melts at 960"C. In: Jiang T. et al. (eds) 6" International Symposium on High-Temperature Metallurgical Processing. Springer, Cham.

-[27] Niu, L., Zhang, T. A., Lv, G., £ Zhang, B. (2017). Study on the Direct Oxidation Thermal Decomposition of Magnesium Chloride by Product in the Sponge Titanium Production Process to Prepare Magnesium Oxide. In Magnesium Technology 2017 (pp. 209-213). Springer International Publishing. DOI: https://doi.org/10.1007/978-3-319-52392-7_32

Published

2022-12-13

How to Cite

Verduzco, A., Gomez, I., Garza, L., & Cavazos , J. L. (2022). Desarrollo de una Ruta Alternativa para Obtención de Titanio Elemental de Mineral de Titanio . Quimica Hoy, 11(04), 52–59. https://doi.org/10.29105/qh11.04-314