Efficient removal of lead(II) ions in water using functionalized poly(styrene) oligomers

Autores/as

  • Maria G. Sánchez Anguiano Universidad Autonoma de Nuevo León
  • Mauricio L. Oliva de Dios Universidad Autonoma de Nuevo León
  • Rodrigo Chan Navarro Universidad Autonoma de Nuevo León
  • Perla Elizondo Martínez Universidad Autonoma de Nuevo León
  • Rosa M. Universidad Autonoma de Nuevo León
  • María Concepción García López Universidad Autonoma de Nuevo León

DOI:

https://doi.org/10.29105/qh12.01-324

Palabras clave:

oligomer, adsorption, response surface methodology, Central composito design, poly(styrene)

Resumen

In this research, chemically functionalized polystyrene oligomers with acrylamide monomers were applied as alternative adsorbent towards Pb(II) from aqueous solutions. Adsorption process of Pb(II) was optimized using the 2*' fractional factorial design with replicates at the central point supplemented with the central composite design where the percentage adsorption was chosen as the response variable. This variable was simultancously optimized using the desirability functions approach to select the best conditions for the adsorption process. The experimental data reveal that after the optimization, the maximal response was exhibited at 38 °C, pH 5.80, initial adsorbate concentration (36.40 mg L™, and adsorbent dosage  (10.77 mg) with the desirability function of 0.9260. Theoretical values and experimental data determined by the central composite design showed a high correlation with a R? value of 0.9810. Under these optimal conditions, the theoretical value for the removal of Pb(II) was 93.12%, while that experimental assay gives a maximum value of 91.23%. Likewise, the analysis of surface charge distribution, the structural and morphological characteristics confirmed the successful chemical modification of poly(styrene) oligomers.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

- [1.] Zhao, D., Wang, Z., Lu, S., Shi, X. An amidoximefunctionalized polypropylene fiber: Competitive removal of Cu (I), Pb (1) and Zn (1) from

wastewater and subsequent sequestration in cement mortar. J Clean Prod, 2020, 274, 123049. DOI: https://doi.org/10.1016/j.jclepro.2020.123049

- [2.] Changmai, M., Banerjee, P., Nahar, K., Purkait, M. K.: A novel adsorbent from carrot, tomato and polyethylene terephthalate waste as a potential adsorbent for Co (11) from , aqueous solution: Kinetic and equilibrium studies. J. Environmen. Chem. Eng. 2018. 6, 246-257. DOI: https://doi.org/10.1016/j.jece.2017.12.009

- [3. ] Abdolmaleki, A., Mallakpour, S., Tabebordbar, H.: Improvement of PVC/a-MnO2-LVA nanocomposites properties: A promising adsorbent

for Pb (II) uptake. Int. J. Polym. Anal. Ch. 2018, 23, 142-155. DOI: https://doi.org/10.1080/1023666X.2017.1404198

- [4.] Lyu, W., Yu, M., Feng, J., Yan, W. Highly crystalline polyaniline nanofibers coating with low-cost biomass for easy separation and high efficient removal of anionic dye ARG from aqueous solution. App Surf Sci, 2018, 458, 413-424. DOI: https://doi.org/10.1016/j.apsusc.2018.07.074

- [5. ] Reza, A. M. Kormoker, T., Idris, A. M., Shamsuzzoha, M., Islam, M. S., El-Zahhar, A. A., Islam, M. S. Removal of arsenic (III) from aqueous media — using amine — functionalized grafted styrene/maleic anhydride low-density polyethylene films. Toxin Reviews, 2022, 41(3), 713-720. DOI: https://doi.org/10.1080/15569543.2021.1922921

- [6] Bunhu, T., Tichagwa, L., Chaukura, N. Competitive sorption of Cd** and Pb”* from a binary aqueous solution by poly (methyl methacrylate)-grafted ‘montmorillonite clay nanocomposite. Appl. Water. Sci. 2017, 2287-2295. DOI: https://doi.org/10.1007/s13201-016-0404-5

- [7.] Abd-Aziz, N.H. ;Alias, S. ;Bashar, N.A.M. ; Amir, A.; Abdul-Talib, S.; Tay, C.C. A short review: Potential use of plastic waste as adsorbent for various pollutants. AIP Conf. Proc. 2019, 2124, 1-11. DOI: https://doi.org/10.1063/1.5117094

- [8.] Reyna, J.P.; García-López, M.C.; Pérez-Rodríguez, N.A. et al. Polystyrene degraded and functionalized with acrylamide for removal of Pb(II) metal ions. Polym. Bull. 2019,76, 2559-2578. DOI: https://doi.org/10.1007/s00289-018-2479-7

- [9.] Motitswe, M.G.; Badmus, K.O.; Khotseng, L. Development of Adsorptive Materials for Selective Removal of Toxic Metals in Wastewater: A Review. Catalysts. 2022, 1057,1-23 DOI: https://doi.org/10.3390/catal12091057

- [10.] Afolabi, F.O.; Musonge, P.; Bakare, B.F. Application of the response surface methodology in the removal of Cu? and Pb?* from aqueous solutions using orange peels. Sci. Afr. 2021;13,1-9. DOI: https://doi.org/10.1016/j.sciaf.2021.e00931

- [11.] Balistrieri, L. S., Murray, J. W.: The surface chemistry of goethite (a- FeOOH) in major ion seawater. Am. J. Sci. 1981,281, 788-806. DOI: https://doi.org/10.2475/ajs.281.6.788

- [12 ] Birniwa, A.H.; Kehili, S.; Ali, M.; Musa, H.; Ali, U.; Kutty, S.R.M.; Jagaba, A.H.; Abdullahi, S.S.; TagEldin, E.M.; Mahmud, H.N.M.E. Polymer-Based Nano-Adsorbent for the Removal of Lead lons: Kinetics Studies and Optimization by Response Surface Methodology. Separations. 2022, 9, 356. . DOI: https://doi.org/10.3390/separations9110356

- [13.] Estrada-Flores, J.D.; García-López, M.C.; ElizondoMartínez, P. et al. Altemative Reuse of Oligomers Derived from Poly(ethylene terephthalate) Waste Deposited onto Microspheres and Determination of Adsorbent Properties Toward Toxic Metals. J Polym Environ. 2020, 28, 1654-1663. . Al-Maliky, EA Gzar, HA; DOI: https://doi.org/10.1007/s10924-020-01715-w

- [14. ] Al-Azawy, M.G. Determination of point of zero charge (PZC) of concrete particles adsorbents. IOP Conf. Ser.: Mater. Sci. Eng.2021, 1184,012004. DOI: https://doi.org/10.1088/1757-899X/1184/1/012004

- [15 ] Sarkar, A.K.; Pal, A. ; Ghorai, S.; Mandre, N.R.; Pal, S. Efficient removal of malachite green dye using biodegradable - graft - copolymer - derived - from amylopectin and poly(acrylic acid). Carbohydr Polym. 2014;111:108-15. DOI: https://doi.org/10.1016/j.carbpol.2014.04.042

- [16. ] Karthik, R. ; Meenakshi, S. Biosorption of Pb(II) and Cd(I) — ions — from — aqueous — solution — using polyaniline/chitin _ composite, Sep. Sci. Technol. 2016, 5, 733-742. DOI: https://doi.org/10.1080/01496395.2015.1130060

- [17] Saadeh, H.A.; Shairah, E.A.A.; Charef, N.; Mubarak, M.S. Synthesis, and adsorption properties, toward terpyridine polymer. J. Appl. Polym. Sci. 2012, 4, 2717-2724. DOI: https://doi.org/10.1002/app.34977

- [18] Mostafa T. B. Chemical modification of polypropylene fibers grafted vinyl imidazole/acrylonitrile - copolymer — prepared by gamma radiation and its possible use for the removal of some heavy metal ions. J. Appl. Polym. Sci. 2019, 111, 11-18. DOI: https://doi.org/10.1002/app.26850

- [19.] Ahmad Panahi, H.; Abdouss, M.; Ghiabi, F.; Moniri, E.; Mousavi Shoushtari, A.: Modification and characterization of poly(ethylene - terephthalate)- grafted-acrylic acid/acryl amide fiber for removal of lead from human plasma and environmental samples. 1. Appl. Polym. Sci. 2012, 5236-5246. DOI: https://doi.org/10.1002/app.34224

Descargas

Publicado

2023-03-31

Cómo citar

Sánchez Anguiano , M. G., Oliva de Dios, M. L., Chan Navarro, R., Elizondo Martínez, P., Rosa M., & García López , M. C. (2023). Efficient removal of lead(II) ions in water using functionalized poly(styrene) oligomers . Quimica Hoy, 12(01), 10–15. https://doi.org/10.29105/qh12.01-324