Synthesis and Characterization of CuO/Co0304 and CuO/Fe:O; Composites and their Potential Aplication in the Photocatalytic CO2 Reduction Process
DOI:
https://doi.org/10.29105/qh12.03-333Palabras clave:
Copper oxide, composites, characterization, CO> reductionResumen
Cupric oxide is a prominent material used as a photocatalyst due to its narrow bandgap; coupling it with other metal oxide
semiconductors improves its efficiency due to the favored charge transference. This work reports the synthesis of the composites CuO/CosO4 and CuO/Fex0s, prepared in a sol-gel and hydrothermal two-step methodology to disperse the
cocatalyst particles over CuO. The effect of the cocatalyst's concentration over CuO in its structural, optical, and
photocatalytic properties was analyzed. A better distribution of the Fe203 particles over CuO was observed, which resulted
in the largest cfficiency in the photocatalytic CO2 reduction to formic acid. Despite this, increasing the cocatalyst
concentration reduces the photocatalytic activity due to the surface saturation, probably causing the formation of
recombination centers. The presented methodology represents a low-cost way to obtain highly efficient composites in
photocatalytic reductive processes.
Descargas
Citas
-[1] Dhineshbabu NR, Rajendran V. — Nithyavathy N, Vetumperumal R, Appl Nanosci., 2016,6, 933-939. DOI: https://doi.org/10.1007/s13204-015-0499-2
-[2] Xu L, Zheng G, Pei S, Wang J, Optik (Stuttg), 2018, 158, 382-390. DOI: https://doi.org/10.1016/j.ijleo.2017.12.138
-[3] Raizada P, Sudhaik A, Patial S, et al., Arabian Joumal of Chemistry, 2020, 13, 8424-8457. DOI: https://doi.org/10.1016/j.arabjc.2020.06.031
-[4] Jagadale SD, Teli AM, Kalake SV, et al, Journal of Electroanalytical Chemistry, 2018, 816, 99-106. DOI: https://doi.org/10.1016/j.jelechem.2018.01.059
-[5] Applerot G, Lellouche J, Lipovsky A, et al., Small, 2018, 8, 3326-3337. DOI: https://doi.org/10.1002/smll.201200772
-[6] Kim Y-S, Hwang I-S, Kim S-J, et al., Sens Actuators B Chem, 2008, 135, 298-303. DOI: https://doi.org/10.1016/j.snb.2008.08.026
-[7] Karthick Kumar S, Suresh S, Murugesan S, Raj SP., Solar Energy, 2013, 94,299-304. DOI: https://doi.org/10.1016/j.solener.2013.05.018
-[8] Wang C, Higgins D, Wang F, et al. Nano Energy, 2014, 9. 334-344. DOI: https://doi.org/10.1016/j.nanoen.2014.08.009
-[9] Outokesh M, Hosseinpour M, Ahmadi SJ, et al., Ind Eng Chem Res, 2011, 50, 3540-3554. DOI: https://doi.org/10.1021/ie1017089
-[10] Uma B, Anantharaju KS, Renuka L, et al., Ceram Int, 2021, 47, 10355-10369. DOI: https://doi.org/10.1016/j.ceramint.2020.10.223
-[11] Apama Y, VRK, SSP., Joumal of nano- and Electronic Physics, 2012, 4, 030041-03004-5
-[12] Yang C, Xiao F, Wang J, Su X., Sens Actuators B Chem., 2015,207, 177-185. DOI: https://doi.org/10.1016/j.snb.2014.10.063
-[13] Li W, Li W, He K, etal., J Hazard Mater., 2022, 432, 128719. DOI: https://doi.org/10.1016/j.jhazmat.2022.128719
-[14] Abdel-Wahab A-M, Al-Shirbini A-S, Mohamed O, Nasr O., J Photochem Photobiol A Chem., 2017, 347, 186-198. DOI: https://doi.org/10.1016/j.jphotochem.2017.07.030
-[15] Melo MA, Centurion HA, Lucas TTA, et al., ACS Appl Nano Mater, 2020, 3, 9303-9317. DOI: https://doi.org/10.1021/acsanm.0c01957
-[16] Hung W-H, Chien T-M, Tseng C-M., The Journal of Physical Chemistry C, 2014, 118, 12676-12681. DOI: https://doi.org/10.1021/jp5033965
-[17] Lee D-S, Chen H-J, Chen Y-W., Journal of Physics and Chemistry of Solids, 2012, 73, 661-669. DOI: https://doi.org/10.1016/j.jpcs.2012.01.005
-[18] Padervand M, Ghasemi S, Hajiahmadi S, Wang C.. Appl Surf Sci, 2021, 544, 148939. DOI: https://doi.org/10.1016/j.apsusc.2021.148939
-[19] Ran J, Jaroniec M, Qiao S-Z, Advanced Materials, 2018, 30, 1704649. DOI: https://doi.org/10.1002/adma.201704649
-[20] Bethi B, Sonawane SH (2018) Nanomaterials and lts Application for Clean Environment. In: Nanomaterials for Green Energy. Elsevier, pp385409. DOI: https://doi.org/10.1016/B978-0-12-813731-4.00012-6
-[21] Garay-Rodríguez LF, Torres-Martínez LM., Journal of Materials Science: Materials in Electronics, 2020, 31, 19248- 19265. DOI: https://doi.org/10.1007/s10854-020-04461-w
-[22] Suresh R, Sandoval C, Ramírez E, et al., Journal of Materials Science: Materials in Electronics, 2018, 29, 20347-20355. DOI: https://doi.org/10.1007/s10854-018-0170-2
-[23] Sagadevan S, Pal K, Chowdhury ZZ., Journal of Materials Science: Materials in Electronics, 2017, 28, 12591-12597. DOI: https://doi.org/10.1007/s10854-017-7083-3
-[24] Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK., Angewandte Chemie International Edition, 2013, 52, 7372-7408. DOI: https://doi.org/10.1002/anie.201207199
-[25] Garay-Rodriguez LF, Torres-Martinez LM, Yoshida H, Juárez-Ramirez I., Top Catal., 2022, 65, 1191-1208. DOI: https://doi.org/10.1007/s11244-022-01668-5
-[26] Ibarra-Rodriguez LI, Alfaro Cruz MR, Garay-Rodriguez LF, et al., Joumal of Materials Research and Technology, 2023, 26, 137-149. DOI: https://doi.org/10.1016/j.jmrt.2023.07.118