Síntesis de carbón activado obtenido a partir de sargazo (Sargassum spp) para la decoloración de agua contaminada

Autores/as

  • Gustavo Espinosa Eufrasio UANL
  • José Enrique Valdez Cerda UANL
  • Margarita Loredo Cansino UANL
  • Ricardo Briones Martínez UANL
  • José Martín Rosas Castor UANL

DOI:

https://doi.org/10.29105/qh13.04-456

Palabras clave:

Remoción, horno tubular, adsorción, colorante

Resumen

La presencia de colorantes en los cuerpos de agua derivados principalmente de la industria textil representa un grave problema de contaminación medioambiental y a la salud humana por lo que es necesario el desarrollo de nuevas tecnologías de factibles económicamente que permitan reducir su concentración. El objetivo del estudio es sintetizar un carbón activado derivado del tratamiento térmico de Sargassum spp., biomasa residual y altamente disponible, para su aplicación en sistemas de adsorción. El carbón activado fue elaborado en horno tubular con flujo de argón, usando K2CO3 como agente activador y carboximetil celulosa como aglomerante. Los experimentos se realizaron en medio acuoso en sistemas batch por espectroscopía UV-Vis a temperaturas de 15 a 25 °C y pH de 4 a 8, aplicando isotermas de adsorción, cinéticas de adsorción y pruebas de reutilización mediante ciclos de adsorción-desorción. El carbón activado presentó una capacidad de adsorción de verde de malaquita de Qmax = 154.857 mg g-1 a 25°C. El modelo de pseudo segundo orden es el que mejor describe la dinámica de adsorción.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

- [1]. Aranda-Figueroa, M.G., Rodríguez-Torres, A., Rodríguez, A., Bolio-López, G.I., Salinas-Sánchez, D.O., Arias-Atayde, D.M., Romero, R.J., Valladares-Cisneros, M.G.: Removal of Azo Dyes from Water Using Natural Luffa cylindrica as a Non-Conventional Adsorbent. Molecules. 29, (2024). https://doi.org/10.3390/MOLECULES29091954, DOI: https://doi.org/10.3390/molecules29091954

- [2]. Behera, A.K., Shadangi, K.P., Sarangi, P.K.: Efficient removal of Rhodamine B dye using biochar as an adsorbent: Study the performance, kinetics, thermodynamics, adsorption isotherms and its reusability. Chemosphere. 354, 141702 (2024). https://doi.org/10.1016/J.CHEMOSPHERE.2024.141702 DOI: https://doi.org/10.1016/j.chemosphere.2024.141702

- [3]. Abbas, A.M., Firas, !, Abdulrazzak, H., Sabbar, W.J., Abdul, R., Faraj, S.: Adsorption of dyes by activated carbon surfaces were prepared from plant residues: Review. J. Mater. Environ. Sci. 2020, 2007–2015 (2007)

- [4]. Nair, A., Kumawat, Y.K., Choudhary, S., Nath, J., Sharma, K., Rasool, T., Sharma, V., Kumar, V.: Malachite green dye adsorption from wastewater using pine gum-based hydrogel: Kinetic and thermodynamic studies. J Mol Struct. 1295, 136671 (2024). https://doi.org/10.1016/J.MOLSTRUC.2023.136671 DOI: https://doi.org/10.1016/j.molstruc.2023.136671

- [5]. Oladoye, P.O., Ajiboye, T.O., Wanyonyi, W.C., Omotola, E.O., Oladipo, M.E.: Insights into remediation technology for malachite green wastewater treatment. Water Science and Engineering. 16, 261–270 (2023). https://doi.org/10.1016/J.WSE.2023.03.002 DOI: https://doi.org/10.1016/j.wse.2023.03.002

- [6]. Zhao, W. de, Chen, L. ping, Jiao, Y.: Preparation of activated carbon from sunflower straw through H3PO4 activation and its application for acid fuchsin dye adsorption. Water Science and Engineering. 16, 192–202 (2023). https://doi.org/10.1016/J.WSE.2023.02.002 DOI: https://doi.org/10.1016/j.wse.2023.02.002

- [7]. Ali, F., Bibi, S., Ali, N., Ali, Z., Said, A., Wahab, Z.U., Bilal, M., Iqbal, H.M.N.: Sorptive Removal of Malachite Green Dye by Activated Charcoal: Process Optimization, Kinetic, and Thermodynamic Evaluation. Case Studies in Chemical and Environmental Engineering. 2, (2020). https://doi.org/10.1016/J.CSCEE.2020.100025 DOI: https://doi.org/10.1016/j.cscee.2020.100025

- [8]. Francoeur, M., Yacou, C., Jean-Marius, C., Chérémond, Y., Jauregui-Haza, U., Gaspard, S.: Optimization of the synthesis of activated carbon prepared from Sargassum (sp.) and its use for tetracycline, penicillin, caffeine and methylene blue adsorption from contaminated water. Environ Technol Innov. 28, 102940 (2022). https://doi.org/10.1016/J.ETI.2022.102940 DOI: https://doi.org/10.1016/j.eti.2022.102940

- [9]. Husien, S., El-taweel, R.M., Mohamed, N., Abdel-Aziz, A.B., Alrefaey, K.A., Elshabrawey, S.O., Mostafa, N.G., Said, L.A., Fahim, I.S., Radwan, A.G.: Potentials of algae-based activated carbon for the treatment of M.orange in wastewater. Case Studies in Chemical and Environmental Engineering. 7, (2023). https://doi.org/10.1016/J.CSCEE.2023.100330 DOI: https://doi.org/10.1016/j.cscee.2023.100330

- [10]. Soo, X.Y.D., Lee, J.J.C., Wu, W.Y., Tao, L., Wang, C., Zhu, Q., Bu, J.: Advancements in CO2 capture by absorption and adsorption: A comprehensive review. Journal of CO2 Utilization. 81, 102727 (2024). https://doi.org/10.1016/J.JCOU.2024.102727 DOI: https://doi.org/10.1016/j.jcou.2024.102727

- [11]. Heryanto, H., Tahir, D., Abdullah, B., Kavgaci, M., Rinovian, A., Masrour, R., Prasad, V.S.R., Sayyed, M.I.: Carbon as a multifunctional material in supporting adsorption performance for water treatment: Science mapping and review. Desalination Water Treat. 320, 100758 (2024). https://doi.org/10.1016/J.DWT.2024.100758 DOI: https://doi.org/10.1016/j.dwt.2024.100758

- [12]. Ho, Z.H., Adnan, L.A.: Phenol Removal from Aqueous Solution by Adsorption Technique Using Coconut Shell Activated Carbon. Tropical Aquatic and Soil Pollution. 1, 98–107 (2021). https://doi.org/10.53623/TASP.V1I2.21 DOI: https://doi.org/10.53623/tasp.v1i2.21

- [13]. Prakoso, T., Rustamaji, H., Yonathan, D., Devianto, H., Widiatmoko, P., Rizkiana, J., Guan, G.: The Study of Hydrothermal Carbonization and Activation Factors’ Effect on Mesoporous Activated Carbon Production From Sargassum sp. Using a Multilevel Factorial Design. Reaktor. 22, 59–69 (2022). https://doi.org/10.14710/REAKTOR.22.2.59-69 DOI: https://doi.org/10.14710/reaktor.22.2.59-69

- [14]. Tobío-Pérez, I., Alfonso-Cardero, A., Yosvany Díaz-Domínguez, ·, Pohl, S., Ramón Piloto-Rodríguez, ·, Lapuerta, · Magín: Thermochemical Conversion of Sargassum for Energy Production: a Comprehensive Review. https://doi.org/10.1007/s12155-021-10382-1 DOI: https://doi.org/10.1007/s12155-021-10382-1

- [15]. Lamata-Bermejo, I., Alba, M.D., Ramírez-Rico, J.: Influence of the chemical activation with KOH/KNO3 on the CO2 adsorption capacity of activated carbons from pyrolysis of cellulose. J Environ Chem Eng. 12, 114288 (2024). https://doi.org/10.1016/J.JECE.2024.114288 DOI: https://doi.org/10.1016/j.jece.2024.114288

Descargas

Publicado

2025-06-24

Cómo citar

Espinosa Eufrasio, G., Valdez Cerda , J. E., Loredo Cansino, M., Briones Martínez, R., & Rosas Castor, J. M. (2025). Síntesis de carbón activado obtenido a partir de sargazo (Sargassum spp) para la decoloración de agua contaminada . Quimica Hoy, 13(04), 16–22. https://doi.org/10.29105/qh13.04-456