Neutron Reflectometry Simulation of Thin Film Heterostructures with Ferromagnetic and Superconducting Layers

Autores/as

  • Reiner Ramos Blazquez Universidad Autónoma de Nuevo León
  • Claudia Garcia Rodriguez Universidad Autónoma de Nuevo León
  • Adolfo Collado Hernandez Universidad Autónoma de Nuevo León

DOI:

https://doi.org/10.29105/qh14.01-468

Palabras clave:

reflectometría, neutrones, películas delgadas, ferromagnético, superconductividad

Resumen

En este trabajo, resolvemos la ecuación de Schrödinger para simular la interacción de neutrones con películas delgadas en el contexto de la técnica de Reflectometría de Neutrones. Estudiamos las curvas de reflectividad de una estructura compuesta por materiales superconductores a ambos lados de una capa ferromagnética. La muestra analizada tiene la configuración Nb (15 nm) / V (70 nm) / X (3 nm) / Nb (100 nm), donde X representa la capa ferromagnética, específicamente Fe, Ni o Gd. Analizamos la dependencia de las curvas de reflectividad con el ángulo de incidencia para ciertos rangos de longitud de onda y discutimos las tendencias observadas. Además, simulamos curvas de Reflectometría de Neutrones Polarizados y comparamos los resultados para diferentes posibles orientaciones de la magnetización de la muestra, verificando las simulaciones con los resultados esperados. Por último, comparamos las curvas de reflectividad para diferentes materiales ferromagnéticos y explicamos los patrones resonantes y correlacionados observados entre las curvas de reflectividad y absorción. Estos efectos se atribuyen a un aumento de la densidad de neutrones cerca de la capa de gadolinio, particularmente cuando el antinodo de la onda estacionaria coincide con esta cada para longitudes de onda de “resonancia”.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

- [1]. Cousin, F., Fadda, G. An introduction to neutron reflectometry. EPJ Web of Conferences 236 (2020) 04001. https://doi.org/10.1051/epjconf/202023604001 DOI: https://doi.org/10.1051/epjconf/202023604001

- [2]. Doucet, M., Archibald, R., Heller, W. Machine learning for neutron reflectometry data analysis of two-layer thin films. Mach. Learn.: Sci. Technol. 2 (2021) 035001. https://doi.org/10.1088/2632-2153/abf257 DOI: https://doi.org/10.1088/2632-2153/abf257

- [3]. Khaydukov, Y. Neutron reflectometry studies of Gd/Nb and Cu30Ni70/Nb superlattices. Journal of Physics: Conference Series 1389 (2019) 012060. https://doi.org/10.1088/1742-6596/1389/1/012060 DOI: https://doi.org/10.1088/1742-6596/1389/1/012060

- [4]. Nikitenko, Y., Zhaketov, V. Magnetism in Ferromagnetic-Superconducting Layered Structures. Physics of Particles and Nuclei, 2022, Vol. 53, No. 6, pp. 1089–1125. https://doi.org/10.1134/S1063779622060065 DOI: https://doi.org/10.1134/S1063779622060065

- [5]. Khaydukov, Y. et. al. On the feasibility to study inverse proximity effect in a single S/F bilayer by polarized neutron reflectometry. Pis’ma v Zh. Eksper. Teoret. Fiz., 2013, Volume 98, Issue 2, 116–120. https://doi.org/ 10.7868/S0370274X13140117 DOI: https://doi.org/10.1134/S0021364013150101

- [6]. Nagy, B. et. al. On the explanation of the paramagnetic Meissner effect in superconductor/ferromagnet heterostructures. EPL, 116 (2016) 17005. https://doi.org/ 10.1209/0295-5075/116/17005 DOI: https://doi.org/10.1209/0295-5075/116/17005

- [7]. Ovsyannikov, G. et. al. Magnetic Proximity Effect at the Interface between a Cuprate Superconductor and an Oxide Spin Valve. Journal of Experimental and Theoretical Physics, 2016, Vol. 122, No. 4, pp. 738–747. https://doi.org/10.1134/S1063776116040063 DOI: https://doi.org/10.1134/S1063776116040063

- [8]. Andreeva, M. et. al. Nuclear Resonance Reflectivity of Dy/Gd Superlattices. JETP Letters, 2018, Vol. 107, No. 3, pp. 196–199. https://doi.org/10.1134/S0021364018030050 DOI: https://doi.org/10.1134/S0021364018030050

- [9]. Devyaterikov, D. et. al. Influence of Dimensional Effects on the Curie Temperature of Dy and Ho Thin Films. Physics of Metals and Metallography, 2021, Vol. 122, No. 5, pp. 465–471. https://doi.org/10.1134/S0031918X21050033 DOI: https://doi.org/10.1134/S0031918X21050033

- [10]. Delcea, M., Helm, C. X ray and Neutron Reflectometry of Thin Films at Liquid Interfaces. Langmuir 2019 35 (26), 8519-8530. http://dx.doi.org/10.1021/acs.langmuir.8b04315 DOI: https://doi.org/10.1021/acs.langmuir.8b04315

- [11]. Zhang, Z. et. al. Adsorption of non-ionic surfactant and monoclonal antibody on siliconized surface studied by neutron reflectometry. Journal of Colloid and Interface Science 584 (2021) 429-438. https://doi.org/10.1016/j.jcis.2020.09.110 DOI: https://doi.org/10.1016/j.jcis.2020.09.110

- [12]. Jerliu, B. et. al. Lithium insertion into silicon electrodes studied by cyclic voltammetry and operando neutron reflectometry. Phys. Chem. Chem. Phys., 2018, 20,23480. https://doi.org/10.1039/C8CP03540G DOI: https://doi.org/10.1039/C8CP03540G

- [13]. Campbell, R. Recent Advances in resolving Kinetic and Dynamic Processes at the Air/Water Interface using Specular Neutron Reflectometry. Current Opinion in Colloid & Interface Science Volume 37, September 2018, Pages 49-60. https://doi.org/10.1016/j.cocis.2018.06.002 DOI: https://doi.org/10.1016/j.cocis.2018.06.002

- [14]. Guasco, L. et. al. Resonant neutron reflectometry for hydrogen detection. Nat Commun 13, 1486 (2022). https://doi.org/10.1038/s41467-022-29092-z DOI: https://doi.org/10.1038/s41467-022-29092-z

- [15]. Ghoussoub, B. et. al. Ion distribution in dry polyelectrolyte multilayers: a neutron reflectometry study. Soft Matter, 2018,14, 1699-1708. https://doi.org/10.1039/c7sm02461d DOI: https://doi.org/10.1039/C7SM02461D

- [16]. Utsuro, M., Ignatovich, V. (2010). Neutron Optics. John Wiley & Sons.

- [17]. Nikitenko, Y. Neutron Standing Waves in Layered Systems: Formation, Detection, and Application in Neutron Physics and for Investigation of Nanostructures. Physics of Particles and Nuclei, 2009, Vol. 40, No. 6, pp. 890–947. https://doi.org/10.1134/S1063779609060069 DOI: https://doi.org/10.1134/S1063779609060069

Descargas

Publicado

2025-08-21

Cómo citar

Ramos Blazquez, R., Garcia Rodriguez, C., & Collado Hernandez, A. (2025). Neutron Reflectometry Simulation of Thin Film Heterostructures with Ferromagnetic and Superconducting Layers . Quimica Hoy, 14(01), 20–25. https://doi.org/10.29105/qh14.01-468