Producción fotocatalítica de H2 bajo irradiación solar simulada, utilizando películas de Fe2O3 sintetizadas por SILAR y decoradas con nanopartículas de AuPd

Autores/as

  • Sergio D López Martínez Universidad Autónoma de Nuevo León
  • Ingrid X. González Betancourt Universidad Autónoma de Nuevo León
  • Isaías Juárez Ramírez Universidad Autónoma de Nuevo León

DOI:

https://doi.org/10.29105/qh14.02-481

Palabras clave:

Fe2O3 thin films, SILAR, photocatalysis, H2 production, AuPd nanoparticles

Resumen

Este estudio describe la síntesis de películas delgadas de Fe2O3 mediante el método de adsorción y reacción sucesiva de capas iónicas (SILAR) y explora su rendimiento en la producción fotocatalítica de hidrógeno bajo luz solar simulada. Se examinó sistemáticamente la influencia de los ciclos de deposición y la calcinación posterior a la deposición. Además, las películas de Fe2O3 fueron decoradas con nanopartículas de oro-paladio (AuPd) mediante deposición física en fase vapor (PVD) para usadas como cocatalizadores. Se evaluaron las propiedades ópticas, morfológicas y fotoluminiscentes junto con las tasas de producción de H2. Los resultados indicaron que las películas de Fe2O3 sin cocatalizador superaron a sus homólogas decoradas con AuPd, lo que sugiere un efecto negativo debido la carga excesiva de cocatalizador, probablemente debido al enmascaramiento del sitio activo y al aumento de la recombinación. Los resultados subrayan la necesidad de evaluar críticamente los tiempos de deposición del cocatalizador y destacan el potencial de las películas de Fe2O3 optimizadas para aplicaciones de energía limpia.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

- [1]. Aye Thiri, M., Tamás Borsi, M. (2024). From Fukushima to fossil fuels: Carbon emissions, climate narratives, and grassroots movements in Japan's energy transition. Energy Research & Social Science, 112, 103520. https://doi.org/10.1016/j.erss.2024.103520 DOI: https://doi.org/10.1016/j.erss.2024.103520

- [2]. Teng Wang, Z., Zeng, S., Khan, Z., (2024). Impact of sustainable energy, fossil fuels and green finance on ecosystem: Evidence from China. Heliyon; 10: e36712. https://doi.org/10.1016/j.heliyon.2024.e36712 DOI: https://doi.org/10.1016/j.heliyon.2024.e36712

- [3]. Wang, J., Azam, W., (2024). Natural resource scarcity, fossil fuel energy consumption, and total greenhouse gas emissions in top emitting countries. Geoscience Frontiers 15, 101757. https://doi.org/10.1016/j.gsf.2023.101757 DOI: https://doi.org/10.1016/j.gsf.2023.101757

- [4]. Serag, S., Echchelh, A., Morrone, B. (2024). Hydroelectric and Hydrogen Storage Systems for Electric Energy Produced from Renewable Energy Sources, Energy Engineering, 121, 2719–2741. https://doi.org/10.32604/ee.2024.054424 DOI: https://doi.org/10.32604/ee.2024.054424

- [5]. Cruz Ake, S., Ortiz Arango, F., García Ruiz, R. S. (2024). Possible paths for Mexico's electricity system in the clean energy transition. Utilities Policy, 87, 101716. https://doi.org/10.1016/j.jup.2024.101716 DOI: https://doi.org/10.1016/j.jup.2024.101716

- [6]. Huang, C.W, Nguyen, B.S, Wu, J. C.S., Nguyen, V.H. (2020). A current perspective for photocatalysis towards the hydrogen production from biomass-derived organic substances and water. International Journal of Hydrogen Energy, 45, 18144–118159. https://doi.org/10.1016/j.ijhydene.2019.08.121 DOI: https://doi.org/10.1016/j.ijhydene.2019.08.121

- [7]. Sun, W., Zheng, Y., Zhu, J.. (2023). A “win-win” photocatalysis: coupling hydrogen production with the synthesis of high value-added organic chemicals. Materials Today Sustainability, 23, 100465. https://doi.org/10.1016/j.mtsust.2023.100465 DOI: https://doi.org/10.1016/j.mtsust.2023.100465

- [8]. Cheng, G., Liu, X., Xiong, J. (2024) Recent advances in coupling pollutants degradation with hydrogen production by semiconductor photocatalysis. Chemical Engineering Journal, 501, 157491. https://doi.org/10.1016/j.cej.2024.157491 DOI: https://doi.org/10.1016/j.cej.2024.157491

- [9]. Sahu, S. K., Palai, A., Sahu, D. (2024) Photocatalytic applications of metal oxide-based nanocomposites for sustainable environmental remediation. Sustainable Chemistry for the Environment, 8, 100162. https://doi.org/10.1016/j.scenv.2024.100162 DOI: https://doi.org/10.1016/j.scenv.2024.100162

- [10]. Tejashwini, D.M., Harini, H.V., Nagaswarupa, H.P., Naik, R., Deshmukh, V.V., Basavaraju, N., (2023). An in-depth exploration of eco-friendly synthesis methods for metal oxide nanoparticles and their role in photocatalysis for industrial dye degradation. Chemical Physics Impact, 7, 100355. https://doi.org/10.1016/j.chphi.2023.100355 DOI: https://doi.org/10.1016/j.chphi.2023.100355

- [11]. Patwa, R., Rohilla, S., Saini, J., Goel, N., (2025). Structural and spectroscopy analysis of nanocomposites of metal oxide ZnO/CuO/Ag by coprecipitation: Potential application in photocatalysis. Ceramics International, 51, 14047. https://doi.org/10.1016/j.ceramint.2025.01.242 DOI: https://doi.org/10.1016/j.ceramint.2025.01.242

- [12]. Aleksanyan, M., Sayunts, A., Shahkhatuni, G., Simonyan, Z., Shahnazaryan, G., Aroutiounian, V., (2024). Fabrication and characterization of highly responsive hydrogen sensor based on Fe2O3: ZnO nanostructured thin film. Measurement: Sensors, 31, 100984. https://doi.org/10.1016/j.measen.2023.100984 DOI: https://doi.org/10.1016/j.measen.2023.100984

- [13]. Salari, M. A., Muğlu, G. M., Şenay, V., Sarıtaş, S., Kundakçı, M.. (2024). Analysis of optical, structural, and morphological properties of a Ti-doped α-Fe2O3 thin film produced through RF and DC magnetron Co-sputtering. Ceramics International, 50, 39221–39225. https://doi.org/10.1016/j.ceramint.2024.07.291 DOI: https://doi.org/10.1016/j.ceramint.2024.07.291

- [14]. Nejkar, T. M., Mulla, N. R., Patil, U. M., Dubal, D. P., Raghunath, S. Patil. (2024). SILAR synthesized α-Fe2O3 thin film anode for the development of all binder-free, high-performing Mg-ion asymmetric supercapacitors. Journal of Energy Storage, 99, 113443. https://doi.org/10.1016/j.est.2024.113443 DOI: https://doi.org/10.1016/j.est.2024.113443

- [15]. Erken, O., (2022). Effect of cycle numbers on the structural, linear and nonlinear optical properties in Fe2O3 thin films deposited by SILAR method. Current Applied Physics, 34, 7–18. https://doi.org/10.1016/j.cap.2021.11.009 DOI: https://doi.org/10.1016/j.cap.2021.11.009

- [16]. Mulla, N. R., Patel, N., Bhosale, S. B., Patil, U. M.,. Patil, R. S. (2024). Morphologically tuned MnO2 thin film electrodes prepared by growth kinetic dependent SILAR approach for high-performance extrinsic pseudocapacitors. Journal of Alloys and Compounds, 1006, 176261. https://doi.org/10.1016/j.jallcom.2024.176261 DOI: https://doi.org/10.1016/j.jallcom.2024.176261

- [17]. Khan, M. T., Prasad, K. H., Khan, A., Shkir, M., (2024). Enhancement of photodetector performance of aluminum-doped zinc oxide thin films fabricated via SILAR method: Structural, optical, and electrical analysis. Inorganic Chemistry Communications, 169, 112973. https://doi.org/10.1016/j.inoche.2024.112973 DOI: https://doi.org/10.1016/j.inoche.2024.112973

- [18]. Bagwade, P.P., Malavekar, D.B. , Magdum, V.V., Khot, S.D., Nikam, R.P. Patil, D.J., Patil, U.M. Lokhande, C.D., (2023). Nanocrystalline cobalt tungstate thin films prepared by SILAR method for electrocatalytic oxygen evolution reaction. International Journal of Hydrogen Energy, 48, 8465–8477. https://doi.org/10.1016/j.ijhydene.2022.11.090 DOI: https://doi.org/10.1016/j.ijhydene.2022.11.090

- [19]. Bu, E., Chen, X., López-Cartes, C., Monzón, A., Delgado, J. J., (2024). Induced aggregates in photocatalysis: An unexplored approach to reduce the noble metal co-catalyst content. Journal of Colloid and Interface Science, 676, 1055–1067. https://doi.org/10.1016/j.jcis.2024.07.028 DOI: https://doi.org/10.1016/j.jcis.2024.07.028

- [20]. Capelo, A., Fattoruso, D., Valencia-Valero, L.C., Esteves, M.A., Rangel, C.M., Puga, A., (2025). Evolution of atomically dispersed co-catalysts during solar or UV photocatalysis for efficient and sustained H2 production. International Journal of Hydrogen Energy, 103, 645–658. https://doi.org/10.1016/j.ijhydene.2025.01.203 DOI: https://doi.org/10.1016/j.ijhydene.2025.01.203

- [21]. Li, Q., Wang, C., Yao, H., He, C., Changfa Guo, C., Hu, Y., (2025). Cocatalysts for photocatalysis: Comprehensive insight into interfacial charge transfer mechanism by energy band theory. Coordination Chemistry Reviews, 535, 216652. https://doi.org/10.1016/j.ccr.2025.216652 DOI: https://doi.org/10.1016/j.ccr.2025.216652

- [22]. López-Martínez, S. D., Juárez-Ramírez, I., Torres-Martínez, L. M., Babar, P., Lokhande, A., Kim, J.H., (2018). SnS-AuPd thin films for hydrogen production under solar light simulation, Journal of Photochemistry and Photobiology A: Chemistry, 361, 19–24. https://doi.org/10.1016/j.jphotochem.2018.04.033 DOI: https://doi.org/10.1016/j.jphotochem.2018.04.033

- [23]. Kulal, P.M., Dubal, D.P., Lokhande, C.D., V.J. Fulari, V.J. (2011). Chemical synthesis of Fe2O3 thin films for supercapacitor application. Journal of Alloys and Compounds, 509, 2567–2571. https://doi.org/10.1016/j.jallcom.2010.11.091 DOI: https://doi.org/10.1016/j.jallcom.2010.11.091

- [24]. Abegunde, O. O., Makha, M., Larhlimi, H., Lahouij, M., Jaghar, N., Samih, Y., Busch, H., Alami, J., (2024). Effect of heat treatment on the thermal stability and properties evolution of TiAlPN thin film prepared by reactive HiPIMS. Materials Chemistry and Physics, 313, 128747. https://doi.org/10.1016/j.jallcom.2023.169818 DOI: https://doi.org/10.1016/j.matchemphys.2023.128747

- [25]. Fu, Y., Hu, S., Zhu, D., Chen, Z., Liu, D., (2025). Effect of thermal oxidation on microstructure and wear resistance of TiZrNb medium-entropy alloy. Surface and Coatings Technology, 497, 131724. https://doi.org/10.1016/j.surfcoat.2024.131724 DOI: https://doi.org/10.1016/j.surfcoat.2024.131724

- [26]. Xu, J., Gao, C., Lu, L., Chen, R., Fu, C., Liu, Y., (2025). Study of the thermal oxidation of sputtered multi-layered TiN/Cu/TiN films. Materials Today Nano, 29, 100577. https://doi.org/10.1016/j.mtnano.2025.100577 DOI: https://doi.org/10.1016/j.mtnano.2025.100577

- [27].. Alvarez-Bustos, D., Sanchez-Minero, F., Santes, V., Romero-Ibarra, I. C., de los Reyes Heredia, J. A., Rios-Escobedo, R., Tzompantzi-Morales, F., & Santolalla-Vargas, C. E. (2022). Synthesis and Evaluation of FeSX/TiO2 for the Photocatalytic Degradation of Phenol under Visible-Light Region. Catalysts, 12, 457. https://doi.org/10.3390/catal12050457 DOI: https://doi.org/10.3390/catal12050457

- [28]. Qayyum, H.A., Al-Kuhaili, M.F., Durrani, S.M.A., (2017). Investigation of fundamental and high order optical transitions in α-Fe2O3 thin films using surface barrier electro reflectance. Superlattices and Microstructures; 110, 98–107. https://doi.org/10.1016/j.spmi.2017.08.057 DOI: https://doi.org/10.1016/j.spmi.2017.08.057

- [29]. Sheik Fareed, S., Mythili, N., Vijayaprasath, G., Chandramohan, R., Ravi. G., (2018). α-Fe2O3 Nanoparticles as a Byproduct from the Thin Film (SILAR) Deposition Process: A Study on the Product. Materials Today: Proceedings, 5, 20955–20965. https://doi.org/10.1016/j.matpr.2018.06.485 DOI: https://doi.org/10.1016/j.matpr.2018.06.485

- [30]. Tahir, D., Ilyas, S., Rahmat, R., Heryanto, H., Fahri, A.N., Rahmi, M.H., Abdullah, B., Hong, C.C., & Kang, H.J. (2021). Enhanced Visible-Light Absorption of Fe2O3 Covered by Activated Carbon for Multifunctional Purposes: Tuning the Structural, Electronic, Optical, and Magnetic Properties. ACS Omega; 6, 28334–28346. https://doi.org/10.1021/acsomega.1c04526 DOI: https://doi.org/10.1021/acsomega.1c04526

- [31]. Promdet, P., Quesada-Cabrera, R., Sathasivam, S., Li, J., Jiamprasertboon, A., Guo, J., Taylor, A., Claire J. Carmalt, C.J., & Parkin, I., P., (2019). High Defect Nanoscale ZnO Films with Polar Facets for Enhanced Photocatalytic Performance. ACS Applied Nano Materials, 2, 2881–2889. https://doi.org/10.1021/acsanm.9b00326 DOI: https://doi.org/10.1021/acsanm.9b00326

- [32]. Alotaibi, A.M. Muayqil, E., Abass, N. A., Alhajji, M. A., Bubshait, A. A., Alhazmi, N. E., Almuqhim, A. A. (2024). Surface engineering of CuO-Cu2O heterojunction thin films for improved photoelectrochemical water splitting. Renewable Energy, 235, 121326. https://doi.org/10.1016/j.renene.2024.121326 DOI: https://doi.org/10.1016/j.renene.2024.121326

- [33]. Zou Y., Shen, Y., Gao P., Wu T., Zhou Q., Liu L., Chen, X., Sun, S., An, Q., (2024). Enhanced selective photocatalytic CO2 reduction to CO on AuPd decorated Bi2O2.33 nanosheets. Journal of Environmental Chemical Engineering 12, 112742. https://doi.org/10.1016/j.jece.2024.112742 DOI: https://doi.org/10.1016/j.jece.2024.112742

- [34]. Tao, X., Shao, L., Wang, R., Xiang, H., Li, B., (2019). Synthesis of BiVO4 nanoflakes decorated with AuPd nanoparticles as selective oxidation photocatalysts. Journal of Colloid and Interface Science; 541, 300–311. https://doi.org/10.1016/j.jcis.2019.01.108 DOI: https://doi.org/10.1016/j.jcis.2019.01.108

- [35]. Christoforidis, K. C., & Fornasiero, P., (2017). Photocatalytic Hydrogen Production: A Rift into the Future Energy Supply. ChemCatChem, 9, 1523–1544. https://doi.org/10.1002/cctc.201601659 DOI: https://doi.org/10.1002/cctc.201601659

- [36]. Chen, Y., Feng, X., Guo, X., Zheng, W., (2019). Toward a fundamental understanding of factors affecting the function of cocatalysts in photocatalytic water splitting. Current Opinion in Green and Sustainable Chemistry, 17, 21–28. https://doi.org/10.1016/j.cogsc.2019.01.002 DOI: https://doi.org/10.1016/j.cogsc.2019.01.002

- [37]. Liu, Y., Sun, Z., Hang Hu.Y., (2021). Bimetallic cocatalysts for photocatalytic hydrogen production from water. Chemical Engineering Journal 409, 128250. https://doi.org/10.1016/j.cej.2020.128250 DOI: https://doi.org/10.1016/j.cej.2020.128250

- [38]. Bootluck, W., Chittrakarn, T., Techato, K., (2022). S-Scheme α-Fe2O3/TiO2 Photocatalyst with Pd Cocatalyst for Enhanced Photocatalytic H2 Production Activity and Stability. Catal Lett, 152, 2590–2606. https://doi.org/10.1007/s10562-021-03873-5 DOI: https://doi.org/10.1007/s10562-021-03873-5

- [39]. Lin, Z., Du, C., Yan B., & Yang. G., (2019). Amorphous Fe2O3 for photocatalytic hydrogen evolution. Catal. Sci. Technol., 9, 5582–5592. https://doi.org/10.1039/C9CY01621J DOI: https://doi.org/10.1039/C9CY01621J

- [40]. Mekatel, E., Trari, M., Nibou, D., Sebai, I., Amorkrane.S., (2019). Preparation and characterization of α-Fe2O3 supported clay as a novel photocatalyst for hydrogen evolution. International Journal of Hydrogen Energy, 44, 10309–10315.https://doi.org/10.1016/j.ijhydene.2019.03.007 DOI: https://doi.org/10.1016/j.ijhydene.2019.03.007

- [41]. Bootluck, W., Chittrakarn, T., Techato, K., Khongnakorn. W., (2021). Modification of surface α-Fe2O3/TiO2 photocatalyst nanocomposite with enhanced photocatalytic activity by Ar gas plasma treatment for hydrogen evolution. Journal of Environmental Chemical Engineering, 9, 105660. https://doi.org/10.1016/j.jece.2021.105660 DOI: https://doi.org/10.1016/j.jece.2021.105660

Descargas

Publicado

2025-12-19

Cómo citar

López Martínez , S. D., González Betancourt, I. X., & Juárez Ramírez, I. (2025). Producción fotocatalítica de H2 bajo irradiación solar simulada, utilizando películas de Fe2O3 sintetizadas por SILAR y decoradas con nanopartículas de AuPd. Quimica Hoy, 14(02), 3–10. https://doi.org/10.29105/qh14.02-481