Cu-Mg-O thin films by RF magnetron co-sputtering: Their band offsets with CdS in heterojunction solar cells

Authors

  • K. C. Sanal Universidad Autónoma de Nuevo León
  • Soorya Pushpan Universidad Autónoma de Nuevo León
  • P. K. Nair Universidad Autónoma de Nuevo León
  • M. T. S. Nair Universidad Autónoma de Nuevo León

DOI:

https://doi.org/10.29105/qh11.03-298

Keywords:

Cu-Mg.O, thin film, rf sputtering, solar cell, XPS depth profile, band offset

Abstract

We report on Cu-Mg.O thin films of 100 - 300 nm in thickness produced by radio frequency (RF) reactive sputtering from
Cu and Mg-metal targets in an argon-oxygen ambient. The amount of Mg in the thin films was varied through changing
the RF power applied at the Mg target. When the Mg content in the Cu-Mg-O film changed from 0 to 0.3, the optical
bandgap increased from 1.73 eV to 2.13 eV, and the electrical conductivity decreased from 9 x 10-3 Ω-1 cm-1(CuxO) to 6.7x 10-5 Ω-1 cm-1(Cuo7/Mg0.30). Solar cells of these films, FTO/ CdS/Cu0.85Mg0.15O/C-Ag, showed a short circuit current density of 2.86 mA/cm2 an open circuit voltage of 378 mV, and power conversion efficiency of 0.25%. X-ray photo-electron spectroscopy depth profile analyses of the interfaces suggest a negative conduction band offset in CdS/Cu0.85Mg0.15O( — 0.74 eV) as well as in CdS/CuxO (0.9 eV) solar cells.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

K. C. Sanal, Universidad Autónoma de Nuevo León

- Instituto de Energías Renovables

- Facultad de Ciencias Químicas

P. K. Nair, Universidad Autónoma de Nuevo León

- Instituto de Energías Renovables

M. T. S. Nair, Universidad Autónoma de Nuevo León

- Instituto de Energías Renovables

References

. L. De Los Santos Valladares, D. H. Salinas, A.B. Dominguez, D. A Najarro, S. Khondaker, T. Mitrelias, C. Barnes, J. Aguiar, and Y. Majima, Crystallization and electrical resistivity of Cuz0 and CuO obtained by thermal oxidation of Cu thin films on SiOy2/Si substrates, Thin Solid Films, 520, 6368 (2012). DOI: https://doi.org/10.1016/j.tsf.2012.06.043

. K. H. Yoon, W. J. Choi, and D. H. Kang, Photoelectrochemical properties of copper oxide thin films coated on an n-Si substrate, Thin Solid Films, 372, 250 (2000). DOI: https://doi.org/10.1016/S0040-6090(00)01058-0

. S. S. Chang, H. J. Lee, and H. J. Park, Photoluminescence properties of spark-processed CuO, Ceram. Int., 31, 411 (2005). DOI: https://doi.org/10.1016/j.ceramint.2004.05.027

. K. Han and M. Tao, Electrochemically deposited p-n homo- junction cuprous oxide solar cells, Sol. Energy Mater. Sol. Cells, 93, 153 (2009). DOI: https://doi.org/10.1016/j.solmat.2008.09.023

. S. Steinhauer, E. Brunet, T. Maier, G. Mutinati, A. Kock, O. Freudenberg, C. Gspan, W.Grogger, A. Neuhold, and R. Resel, Gas sensing properties of novel CuO nanowire devices, Sens. Actuators B. Chem., 187, 50(2013). DOI: https://doi.org/10.1016/j.snb.2012.09.034

. Y.Tokura, H. Takagi, and S. Uchida, A superconducting copper oxide compound with electrons as the charge carriers, Nature, 337, 345 (1989). DOI: https://doi.org/10.1038/337345a0

. G. Ren, D. Hu, E. W. Cheng, M. A. Vargas-Reus, P. Reip, and R. P. Allaker, Characterisation of copper oxide nanoparticles for antimicrobial applications, /nt. J. Antimicrob. Agents, 33, 587-590 (2009). DOI: https://doi.org/10.1016/j.ijantimicag.2008.12.004

. N. Kikuchi and K. Tonooka, Electrical and structural properties of Ni-doped Cu20 films prepared by pulsed laser deposition, Thin Solid Film, 486, 33 (2005). DOI: https://doi.org/10.1016/j.tsf.2004.12.044

. K. C. Sanal, L .S. Vikas and M. K. Jayaraj, Room temperature deposited transparent p-channel CuO thin film transistors Appl. Surf. Sci., 297, 152 (2014). DOI: https://doi.org/10.1016/j.apsusc.2014.01.109

. M. Al-Kuhaili, Characterization of copper oxide thin films deposited by the thermal evaporation of cuprous oxide (Cu20), Vacuum, 82, 623 (2008). DOI: https://doi.org/10.1016/j.vacuum.2007.10.004

. M. T. S. Nair, L. Guerrero, O. L. Arenas, and P. K. Nair, Chemically deposited copper oxide thin films: structural, optical and electrical characteristics, Appl. Surf. Sci., 150, 143 (1999). DOI: https://doi.org/10.1016/S0169-4332(99)00239-1

. Y. Gullen, F. Bayansal, B. Sahin, H. A. Cetinkara, and H. S. Guider, Fabrication and characterization of Mndoped CuO thin films by the SILAR method, Ceram. Int., 39, 6475 (2013). DOI: https://doi.org/10.1016/j.ceramint.2013.01.077

. A. Brazdeikis, U. O. Karlsson, and A. S. Flodstrom, An atomic force microscopy study of thin copper oxide films grown by molecular beam epitaxy on Mg0(100), Thin Solid Film, 281, 57 (1996). DOI: https://doi.org/10.1016/0040-6090(96)08574-4

. 1. Y. Erdogan and O. Gúllú, Optical and structural properties of CuO nanofilm: its diode application, Alloys Compd., 492, 378 (2010). DOI: https://doi.org/10.1016/j.jallcom.2009.11.109

. K. C. Sanal and M. K. Jayaraj, Development of ptype amorphous Cu1-x Bx0»2 - a thin films and fabrication of pn hetero junction, Mater. Sci. Eng. B, 185, 109 (2014). DOI: https://doi.org/10.1016/j.mseb.2014.02.017

. K. C. Sanal and M. K. Jayaraj, Room temperature deposited p-channel amorphous Cui-x CrxO2 -a thin filmtransistors, Appl. Surf. Sci., 315, 274 (2014). DOI: https://doi.org/10.1016/j.apsusc.2014.07.107

. M. Nolan and S. D. Elliott, Tuning the Transparency of Cuz0 with Substitutional Cation Doping, Chem. Mater., 20, 5522 (2008). DOI: https://doi.org/10.1021/cm703395k

. J. Resende, C. Jiménez, N. D. Nguyen, and J. L. Deschanvres, Magnesium-doped cuprous oxide (Mg:Cu20) thin films as a transparent p-type semiconductor, Phys. Status Solidi Appl. Mater. Sci., 213, 2296 (2016). DOI: https://doi.org/10.1002/pssa.201532870

. R. Nagarajan, A. D. Draeseke, A. W. Sleight, and J. Tate, p-type conductivity in CuCri-xMgxO» films and powders, J. Appl. Phys., 89, 8022 (2001). DOI: https://doi.org/10.1063/1.1372636

. S. Masudy-Panah, G. K. Dalapati, K. Radhakrishnan, A. Kumar, H. R. Tan, E. N. Kumar, C. Vijila, C. C. Tan, and D. Z. Chi, p-CuO/n-Si

heterojunction solar cells with high open circuit voltage and photocurrent through interfacial engineering, Prog. Photovolt., 22, 637 (2015).

. S. Masudy-Panah, K- Radhakrishnan, H. R. Tan, R. Yi, T. I Wong, and G. K. Dalapati, itanium doped cupric oxide for photovoltaic application, Sol. Energy Mater. Sol. Cells, 140, 266 (2015). DOI: https://doi.org/10.1016/j.solmat.2015.04.024

. A. Bhaumik, A. Haque, P. Karnati, M. F. N. Taufique, R. Patel, and K. Ghosh, Coopper oxide based nanostructures for improved solar cell efficiency, Thin Solid Films, 572, 126 (2014). DOI: https://doi.org/10.1016/j.tsf.2014.09.056

. A. Kaphle, E. Echeverria, D. N. McLlroy, and P. Hari, Enhancement in the performance of nanostructured CuO—ZnoO solar cells by band alignmen, RSC 4dv., 10, 7839 (2020). DOI: https://doi.org/10.1039/C9RA10771A

. M. T. S. Nair, P. K. Nair, R. A. Zingaro, and E. A. Meyers, Conversion of chemically deposited photosensitive CdS thin films to n-type by air annealing and ion exchange reaction, J. Appl. Phys., 75, 1557 (1994). DOI: https://doi.org/10.1063/1.356391

. G. H. Aylward and T. J. V. Findlay, S / chemical data, 2nd ed., p. 44-72, Wiley, Milton, (1974).

. Y. Lv, L. Li, P. Yin, and T. Lei, Synthesis and evaluation of the structural and antibacterial properties of doped copper oxide, Dalt. Trans., 49, 4699 (2020). DOI: https://doi.org/10.1039/D0DT00201A

. A. Yildiz, Horzum, N. Serin, and T. Serin, Hopping conduction in In-doped CuO thin films, Appl. Surf. Sci., 318, 105 (2014). DOI: https://doi.org/10.1016/j.apsusc.2014.01.118

. S. Horzum, A. Yildiz, N. Serin, and T. Serin, Carrier transport in In-doped CuO thin films, Philos. Mag. Let., 93,3110 (013). DOI: https://doi.org/10.1080/14786435.2013.800651

. J. 1. Pankove, Optical Processes in Semiconductors, p. 36, 94., Dover, New York, (1975).

. E. A. Kraut, R. W. Grant, J. R.Waldrop and S. P. Kowalczyk, Precise Determination of the Valence-Band Edge in X Ray Photoemission Spectra, Phys. Rev. Lett., 44, 1620 (1980). DOI: https://doi.org/10.1103/PhysRevLett.44.1620

. M. Kumar, M. K. Rajpalke, B. Roul, T. N. Bhat, A. T. Kalghatgi, and S. B. Krupanidhi, Determination of MBE grown wurtzite GaN/Ge3N4/Ge heterojunctions band offset by X-ray photoelectron spectroscopy, Phys. Status Solidi B, 249, 58 (2012). DOI: https://doi.org/10.1002/pssb.201147318

. A. M. Abdel Haleem and M. Ichimura, Experimental determination of band offsets at the SnS/CdS and SnS/InS xOy heterojunctions, J. Appl. Phys., 107, 34507 (2010). DOI: https://doi.org/10.1063/1.3294619

. P. Sawicka-Chudy, M. Sibiñski, G. Wisz, E. RybakWilusz, and M. Cholewa, Numerical analysis and optimization of Cu20/TiO0», CuO/TiOz, heterojunction solar cells using SCAPS, J. Phys. Conf. Ser., 1033, 1 (018).

Published

2022-12-06

How to Cite

Sanal, K. C., Pushpan, S., Nair, P. K., & Nair, M. T. S. (2022). Cu-Mg-O thin films by RF magnetron co-sputtering: Their band offsets with CdS in heterojunction solar cells . Quimica Hoy, 11(03), 41–49. https://doi.org/10.29105/qh11.03-298