Características químicas y ópticas del material PM2.5 y del carbono orgánico soluble en agua (WSOC) colectado en una zona del Area Metropolitana de Monterrey
DOI:
https://doi.org/10.29105/qh11.04-311Palabras clave:
PM2.5, XPS, carbono orgánico soluble en agua (WSOC), MéxicoResumen
En este trabajo se reporta la composición química y las propiedades ópticas de las partículas finas (PM2.5) y el carbono orgánico soluble en agua (WSOC) de estas partículas. Las muestras se colectaron en un sitio urbano del Área Metropolitana de Monterrey en México durante el invierno 2020 y se caracterizaron mediante espectroscopía infrarroja de transformada de Fourier de reflectancia total atenuada (ATRFTIR), espectroscopia de reflectancia difusa de infrarrojo cercano ultravioleta-visible (UV-Vis-NIR-DRS), espectroscopia de fotoelectrones de rayos X (XPS). La concentración promedio de PM2.5 en San Bernabé sobrepasó el límite de la NOM-025-SSA1-2014, lo cual representa un riesgo potencial a la salud de la población expuesta. Los análisis ATR-FTIR permitieron la identificación de iones inorgánicos (por ejemplo, CO32-, SO42- y NO32-), grupos funcionales orgánicos [por ejemplo, carbonilos (C=O), hidroxilo orgánico (C-OH), ácido carboxílico (COOH)] e hidrocarburos alifáticos aromáticos e insaturados. Los resultados obtenidos por XPS revelaron la presencia de especies químicas orgánicas e inorgánicas en PM2.5. Los espectros de reflectancia difusa proporcionaron las bandas de absorción en la región UV para CaSO4, CaCO3 y aluminosilicatos. Los valores del coeficiente de absorción a 365 nm (Abs365) y del exponente de absorción de Ángstróm (AAE) obtenidos para los extractos acuosos sugieren que muchos de los compuestos orgánicos solubles en agua correspondían a cromóforos de carbono marrón (BrC). Los valores del MAE365 hallados en esta investigación fueron más bajos que los reportados en ciudades altamente contaminadas.
Descargas
Citas
-[1] Clean Air Institute, 2012. Air Quality in Latin America: An Overview.
-[2] Chen, P., Kang, S., Li, C., Zhang, Q., Guo, J., Tripathee, L., Zhang, Y., Li, G., Gul, C., Cong, Z., Wan, X., Niu, H., Panday, A.K., Rupakheti, M., Ji, Z., 2019. Carbonaceous aerosol characteristics on the Third Pole: A primary study based on the Atmospheric Pollution and Cryospheric Change (APCC) network. Environ. Pollut. 253, 49-60. https://doi.org/https://doi.org/10.1016/¡.envpol.2019.06.112 DOI: https://doi.org/10.1016/j.envpol.2019.06.112
-[3] Bond, T.C., Streets, D.G., Yarber, K.F., Nelson, S.M., Woo, J.H., Klimont, Z., 2004. A technology-based global inventory of black and organic carbon emissions from combustion. J. Geophys. Res. Atmos. 109, 1-43. https://doi.org/10.1029/2003JD003697 DOI: https://doi.org/10.1029/2003JD003697
-[4] Miyazaki, Y., Kondo, Y., Shiraiwa, M., Takegawa, N., Miyakawa, T., Han, S., Kita, K., Hu, M., Deng, Z.Q., Zhao, Y., Sugimoto, N., Blake, D.R., Weber, R.J., 2009. Chemical characterization of watersoluble organic carbon aerosols at a rural site in the Pearl River Delta, China, in the summer of 2006. J. Geophys. Res. Atmos. 114. https://doi.org/10.1029/2009JD011736 DOI: https://doi.org/10.1029/2009JD011736
-[5] Wu, G., Fu, P., Ram, K., Song, J., Chen, Q., Kawamura, K., Wan, X., Kang, S., Wang, X., Laskin, A., Cong, Z., 2021. Fluorescence characteristics of water-soluble organic carbon in atmospheric aerosolY%. Environ. Pollut. 268, 115906. https://doi.org/10.1016/¡.envpol.2020.115906 DOI: https://doi.org/10.1016/j.envpol.2020.115906
-[6] González, L.T., Longoria-Rodríguez, F.E., SánchezDomínguez, M., Leyva-Porras, C., Acuña-Askar, K., Kharissov, B.I., Arizpe-Zapata, A., AlfaroBarbosa, J.M., 2018. Seasonal variation and chemical composition of particulate matter: A study by XPS, ICP-AES and sequential microanalysis using Raman with SEM/EDS. J. Environ. Sci. (China) 1-18. https://doi.org/10.1016/¡.jes.2018.02.002
-[7] González, L.T., Rodríguez, F.E.L., SánchezDomínguez, M., Cavazos, A., Leyva-Porras, C., Silva-Vidaurri, L.G., Askar, K.A., Kharissov, B.I., Chiu J.F.V., Barbosa JMA., 2017. Determination of trace metals in TSP and PM2.5 materials collected in the Metropolitan Area of Monterrey, Mexico: A characterization study by XPS, ICP-AES and SEM-EDS. Atmos. Res. 196, 8-22. https://doi.org/https://doi.org/10.1016/].atmosres.2017.05.009 DOI: https://doi.org/10.1016/j.atmosres.2017.05.009
-[8] Mancilla, Y., Paniagua, 1.Y.H., Mendoza, A., 2019. Spatial differences in ambient coarse and fine particles in the Monterrey metropolitan area, Mexico: Implications for source contribution. J. Air Waste Manage. Assoc. 69, 548-564. https://doi.org/10.1080/10962247.2018.1549121 DOI: https://doi.org/10.1080/10962247.2018.1549121
-[9] U.S. EPA. Environmental Protection Agency Methods, 1999. Compendium Method 1O-2.1.
-[10] Teich, M., Van Pinxteren, D., Wang, M., Kecorius, S., Wang, Z., Miller, T., Mocnik, G., Herrmann, H., 2017. Contributions of nitrated aromatic compounds to the light absorption of water-soluble and particulate brown carbon in different atmospheric environments in Germany and China. Atmos. Chem. Phys. 17, 1653-1672. https://doi.org/10.5194/acp-17-1653-2017 DOI: https://doi.org/10.5194/acp-17-1653-2017
-[11] Mo, Y., Li, J., Cheng, Z., Zhong, G., Zhu, S., Tian, C., Chen, Y., Zhang, G., 2021. Dual Carbon Isotope-Based Source Apportionment and Light Absorption Properties of Water-Soluble Organic Carbon in PM2.5 Over China. J. Geophys. Res. Atmos. 126. https://doi.org/10.1029/2020JD033920 DOI: https://doi.org/10.1029/2020JD033920
-[12] Wu, G., Ram, K., Fu, P., Wang, W., Zhang, Y., Liu, X., Stone, E.A., Pradhan, B.B., Dangol, P.M., Panday, A.K., Wan, X., Bai, Z., Kang, S., Zhang, Q., Cong, Z., 2019, Water-Soluble Brown Carbon in Atmospheric Aerosols from Godavari (Nepal), a Regional Representative of South Asia. Environ. Sci. Technol. 53, 3471-3479. DOI: https://doi.org/10.1021/acs.est.9b00596
-[13] Moosmiiller, H., Chakrabarty, R.K., Ehlers, K.M., Arnott, W.P., 2011. Absorption Ángstróm coefficient, brown carbon, and aerosols: Basic concepts, bulk matter, and spherical particles. Atmos. Chem. Phys. 11, 1217-1225. https://doi.org/10.5194/acp-11-1217-2011 DOI: https://doi.org/10.5194/acp-11-1217-2011
-[14] SSA, 2014. NOM-025-SSA1-2014. “Salud ambiental. Valores límites permisibles para la concentración de partículas suspendidas PM10 y PM2.5 en el aire ambiente y criterios para su evaluación”, México, D.F.
-[15] Yu, X., Song, W., Yu, Q., Li, S., Zhu, M., Zhang, Y., Deng, W., Yang, W., Huang, Z., Bi, X., Wang, X., 2018. Fast screening compositions of PM2.5 by ATR-FTIR: Comparison with results from IC andOC/EC analyzers. J. Environ. Sci. 71, 76-88. https://doi.org/https://doi.org/10.1016/¡.jes.2017.11.021 DOI: https://doi.org/10.1016/j.jes.2017.11.021
-[16] Zeb, B., Alam, K., Sorooshian, A., Blaschke, T., Ahmad, I., Shahid, I., 2018. On the morphology and composition of particulate matter in an urban environment. Aerosol Air Qual. Res. 18, 1431—1447. https://doi.org/10.4209/aaqr.2017.09.0340 DOI: https://doi.org/10.4209/aaqr.2017.09.0340
-[17] Aldabe, J., Elustondo, D., Santamaría, C., Lasheras, E., Pandolfi, M., Alastuey, A., Querol, X., Santamaría, J.M., 2011. Chemical characterisation and source apportionment of PM2.5 and PM10 at rural, urban and traffic sites in Navarra (North of Spain). Atmos. Res. 102, 191-205. https://doi.org/https://doi.org/10.1016/j.atmosres.2011.07.003 DOI: https://doi.org/10.1016/j.atmosres.2011.07.003
-[18] Martin, S.T., Hung, H.M., Park, R.J., Jacob, D.J., Spurr, R.J.D., Chance, K. V., Chin, M., 2004. Effects of the physical state of tropospheric ammonium-sulfate-nitrate particles on global aerosol direct radiative forcing. Atmos. Chem. Phys. 4, 183-214. https://doi.org/10.5194/acp-4-183-2004 DOI: https://doi.org/10.5194/acp-4-183-2004
-[19] Siciliano, T., Siciliano, M., Malitesta, C., Proto, A., Cucciniello, R., Giove, A., lacobellis, S., Genga, A., 2018. Carbonaceous PM10 and PM2.5 and secondary organic aerosol in a coastal rural site near Brindisi (Southern Italy). Environ. Sci. Pollut. Res. 25, 23929-23945. https://doi.org/10.1007/s11356-018-2237-2 DOI: https://doi.org/10.1007/s11356-018-2237-2
-[20] Ravisankar, R., Kiruba, S., HEswaran, P., Senthilkumar, G., Chandrasekaran, A., 2010. Mineralogical Characterization Studies of Ancient Potteries of Tamilnadu, India by FT-IR Spectroscopic Technique. E-Journal Chem. 7, 643218. https://doi.org/10.1155/2010/643218 DOI: https://doi.org/10.1155/2010/643218
-[21] Shaka”, H., Saliba, N.A., 2004. Concentration measurements and chemical composition of PM10-2.5 and PM2.5 at a coastal site in Beirut, Lebanon. Atmos. Environ. 38, 523-531. https://doi.org/10.1016/j.atmosenv.2003.10.009 DOI: https://doi.org/10.1016/j.atmosenv.2003.10.009
-[22] Atzei, D., Fantauzzi, M., Rossi, A., Fermo, P., Piazzalunga, A., Valli, G., Vecchi, R., 2014. Applied Surface Science Surface chemical characterization of PM 10 samples by XPS. Appl. Surf. Sci. 307, 120-128. https://doi.org/10.1016/¡.apsusc.2014.03.178 DOI: https://doi.org/10.1016/j.apsusc.2014.03.178
-[23] Torrent, J., Barrón, V., 2015. Diffuse reflectance spectroscopy. Methods Soil Anal. Part 5 Mineral. Methods S, 367-385. https://doi.org/10.2136/sssabookserS.5.c13 DOI: https://doi.org/10.2136/sssabookser5.5.c13
-[24] Nagabhushana, H., Nagaraju, G., Nagabhushana, B.M., Shivakumara, C., Chakradhar, R.P.S., 2010. Hydrothermal synthesis and characterization of
CaSO4 pseudomicrorods. Philos. Mag. Lett. 90, 289-298. https://doi.org/10.1080/09500831003636051 DOI: https://doi.org/10.1080/09500831003636051
-[25] Al Omari, M.M.H., Rashid, 1.S., Qinna, N.A., Jaber, A.M., Badwan, A.A., 2016. Chapter Two - Calcium Carbonate, in: Brittain, H.G. (Ed.), Profiles of Drug Substances, Excipients and Related Methodology. Academic Press, pp. 31-
https://doi.org/https://doi.org/10.1016/bs.podrm.2015.11.003 DOI: https://doi.org/10.1016/bs.podrm.2015.11.003
-[26] Zent, A.P., Ichimura, A.S., Quinn, R.C., Harding, H.K., 2008. The formation and stability of the superoxide radical (O2-) on rock-forming minerals: Band gaps, hydroxylation state, and implications for Mars oxidant chemistry. J. Geophys. Res. Planets 113. https://doi.org/https://doi.org/10.1029/2007JE003001 DOI: https://doi.org/10.1029/2007JE003001
-[27] Liu, C., Chung, C. E., Yin, Y., and Schnaiter, M. (2018). The Absorption Ángstróm Exponent of Black Carbon: from Numerical Aspects. Atmos. Chem. Phys. 18, 6259-6273. doi:10.5194/acp-18- 6259-2018 DOI: https://doi.org/10.5194/acp-18-6259-2018
-[28] Liu, J., Bergin, M., Guo, H., King, L., Kotra, N., Edgerton, E., et al. (2013). Sizeresolved Measurements of Brown Carbon inWater and Methanol Extracts and Estimates of Their Contribution to Ambient Fine-Particle Light Absorption. Atmos. Chem. Phys. 13, 12389— 12404. doi:10.5194/acp-13-12389-2013. DOI: https://doi.org/10.5194/acp-13-12389-2013
-[29] Satish, R., Shamjad, P., Thamban, N., Tripathi, S., and Rastogi, N. (2017). Temporal Characteristics of Brown Carbon over the Central Indo-Gangetic
Plain. Environ. Sci. Technol. 51, 6765-6772. doi:10.1021/acs.est.7b00734. DOI: https://doi.org/10.1021/acs.est.7b00734
-[30] Yan, G., Kim, G., 2017. Speciation and Sources of Brown Carbon in Precipitation at Seoul, Korea: Insights from Excitation—Emission Matrix Spectroscopy and Carbon Isotopic Analysis. Environ. Sci. Technol. 51, 11580-11587. https://doi.org/10.1021/acs.est.7002892 DOI: https://doi.org/10.1021/acs.est.7b02892
-[31] Yuan, W., Huang, R.J., Yang, L., Guo, J., Chen, Z., Duan, J., Wang, T., N1, H., Han, Y., Li, Y., Chen, Q., Chen, Y., Hoffmann, T., O"Dowd, C., 2020. Characterization of the light-Absorbing properties, chromophore composition and sources of brown
carbon aerosol in Xian, northwestern China. Atmos. Chem. Phys. 20, 5129-5144. https://doi.org/10.5194/acp-20-5129-2020 DOI: https://doi.org/10.5194/acp-20-5129-2020
-[32] Kirillova, E. N., Andersson, A., Tiwari, S., Srivastava, A. K., Bisht, D. S., and Gustafsson, Ó. (014). Water-soluble Organic Carbon Aerosols during a Full New Delhi Winter: Isotope-Based Source Apportionment and Optical Properties. J.
Geophys. Res. Atmos. 119, 3476-3485. doi:10.1002/2013JD020041 DOI: https://doi.org/10.1002/2013JD020041
-[33] Kim, H., Kim, J.Y., Jin, H.C., Lee, J.Y., Lee, S.P., 2016. Seasonal variations in the light-absorbing properties of water-soluble and insoluble organic aerosols in Seoul, Korea. Atmos. Environ. 129, 234-242. https://doi.org/10.1016/.atmosenv.2016.01.042 DOI: https://doi.org/10.1016/j.atmosenv.2016.01.042
-[34] Hecobian, A., Zhang, X., Zheng, M., Frank, N., Edgerton, E.S., Weber, R.J., 2010. Water-soluble organic aerosol material and the light-absorption characteristics of aqueous extracts measured over the Southeastern United States. Atmos. Chem. DOI: https://doi.org/10.5194/acp-10-5965-2010
Phys. 10, 5965-5977. https://doi.org/10.5194/acp10-5965-2010
-[35] Pokhrel, R.P., Beamesderfer, E.R., Wagner, N.L., Langridge, J.M., Lack, D.A., Jayarathne, T., Stone, E.A., Stockwell, C.E., Yokelson, R.J., Murphy, S.M., 2017. Relative importance of black carbon, brown carbon, and absorption enhancement from clear coatings in biomass burning emissions. Atmos. Chem. Phys. 17, 5063-5078. https://doi.org/10.5194/acp-17-5063-2017 DOI: https://doi.org/10.5194/acp-17-5063-2017