Características químicas y ópticas del material PM2.5 y del carbono orgánico soluble en agua (WSOC) colectado en una zona del Area Metropolitana de Monterrey

Authors

  • Lucy T. González Tecnologico de Monterrey
  • F. E. Longoria Rodríguez Centro de Investigación en Materiales Avanzados S.C.
  • Karim Acuña Askar Universidad Autónoma de Nuevo León
  • J. M. Alfaro Barbosa Universidad Autónoma de Nuevo León
  • Boris Kharisov Universidad Autónoma de Nuevo León
  • Alberto Mendoza Universidad Autónoma de Nuevo León

DOI:

https://doi.org/10.29105/qh11.04-311

Keywords:

PM2.5, XPS, carbono orgánico soluble en agua (WSOC), México

Abstract

En este trabajo se reporta la composición química y las propiedades ópticas de las partículas finas (PM2.5) y el carbono orgánico soluble en agua (WSOC) de estas partículas. Las muestras se colectaron en un sitio urbano del Área Metropolitana de Monterrey en México durante el invierno 2020 y se caracterizaron mediante espectroscopía infrarroja de transformada de Fourier de reflectancia total atenuada (ATRFTIR), espectroscopia de reflectancia difusa de infrarrojo cercano ultravioleta-visible (UV-Vis-NIR-DRS), espectroscopia de fotoelectrones de rayos X (XPS). La concentración promedio de PM2.5 en San Bernabé sobrepasó el límite de la NOM-025-SSA1-2014, lo cual representa un riesgo potencial a la salud de la población expuesta. Los análisis ATR-FTIR permitieron la identificación de iones inorgánicos (por ejemplo, CO32-, SO42- y NO32-), grupos funcionales orgánicos [por ejemplo, carbonilos (C=O), hidroxilo orgánico (C-OH), ácido carboxílico (COOH)] e hidrocarburos alifáticos aromáticos e insaturados. Los resultados obtenidos por XPS revelaron la presencia de especies químicas orgánicas e inorgánicas en PM2.5. Los espectros de reflectancia difusa proporcionaron las bandas de absorción en la región UV para CaSO4, CaCO3 y aluminosilicatos. Los valores del coeficiente de absorción a 365 nm (Abs365) y del exponente de absorción de Ángstróm (AAE) obtenidos para los extractos acuosos sugieren que muchos de los compuestos orgánicos solubles en agua correspondían a cromóforos de carbono marrón (BrC). Los valores del MAE365 hallados en esta investigación fueron más bajos que los reportados en ciudades altamente contaminadas.

Downloads

Download data is not yet available.

References

-[1] Clean Air Institute, 2012. Air Quality in Latin America: An Overview.

-[2] Chen, P., Kang, S., Li, C., Zhang, Q., Guo, J., Tripathee, L., Zhang, Y., Li, G., Gul, C., Cong, Z., Wan, X., Niu, H., Panday, A.K., Rupakheti, M., Ji, Z., 2019. Carbonaceous aerosol characteristics on the Third Pole: A primary study based on the Atmospheric Pollution and Cryospheric Change (APCC) network. Environ. Pollut. 253, 49-60. https://doi.org/https://doi.org/10.1016/¡.envpol.2019.06.112 DOI: https://doi.org/10.1016/j.envpol.2019.06.112

-[3] Bond, T.C., Streets, D.G., Yarber, K.F., Nelson, S.M., Woo, J.H., Klimont, Z., 2004. A technology-based global inventory of black and organic carbon emissions from combustion. J. Geophys. Res. Atmos. 109, 1-43. https://doi.org/10.1029/2003JD003697 DOI: https://doi.org/10.1029/2003JD003697

-[4] Miyazaki, Y., Kondo, Y., Shiraiwa, M., Takegawa, N., Miyakawa, T., Han, S., Kita, K., Hu, M., Deng, Z.Q., Zhao, Y., Sugimoto, N., Blake, D.R., Weber, R.J., 2009. Chemical characterization of watersoluble organic carbon aerosols at a rural site in the Pearl River Delta, China, in the summer of 2006. J. Geophys. Res. Atmos. 114. https://doi.org/10.1029/2009JD011736 DOI: https://doi.org/10.1029/2009JD011736

-[5] Wu, G., Fu, P., Ram, K., Song, J., Chen, Q., Kawamura, K., Wan, X., Kang, S., Wang, X., Laskin, A., Cong, Z., 2021. Fluorescence characteristics of water-soluble organic carbon in atmospheric aerosolY%. Environ. Pollut. 268, 115906. https://doi.org/10.1016/¡.envpol.2020.115906 DOI: https://doi.org/10.1016/j.envpol.2020.115906

-[6] González, L.T., Longoria-Rodríguez, F.E., SánchezDomínguez, M., Leyva-Porras, C., Acuña-Askar, K., Kharissov, B.I., Arizpe-Zapata, A., AlfaroBarbosa, J.M., 2018. Seasonal variation and chemical composition of particulate matter: A study by XPS, ICP-AES and sequential microanalysis using Raman with SEM/EDS. J. Environ. Sci. (China) 1-18. https://doi.org/10.1016/¡.jes.2018.02.002

-[7] González, L.T., Rodríguez, F.E.L., SánchezDomínguez, M., Cavazos, A., Leyva-Porras, C., Silva-Vidaurri, L.G., Askar, K.A., Kharissov, B.I., Chiu J.F.V., Barbosa JMA., 2017. Determination of trace metals in TSP and PM2.5 materials collected in the Metropolitan Area of Monterrey, Mexico: A characterization study by XPS, ICP-AES and SEM-EDS. Atmos. Res. 196, 8-22. https://doi.org/https://doi.org/10.1016/].atmosres.2017.05.009 DOI: https://doi.org/10.1016/j.atmosres.2017.05.009

-[8] Mancilla, Y., Paniagua, 1.Y.H., Mendoza, A., 2019. Spatial differences in ambient coarse and fine particles in the Monterrey metropolitan area, Mexico: Implications for source contribution. J. Air Waste Manage. Assoc. 69, 548-564. https://doi.org/10.1080/10962247.2018.1549121 DOI: https://doi.org/10.1080/10962247.2018.1549121

-[9] U.S. EPA. Environmental Protection Agency Methods, 1999. Compendium Method 1O-2.1.

-[10] Teich, M., Van Pinxteren, D., Wang, M., Kecorius, S., Wang, Z., Miller, T., Mocnik, G., Herrmann, H., 2017. Contributions of nitrated aromatic compounds to the light absorption of water-soluble and particulate brown carbon in different atmospheric environments in Germany and China. Atmos. Chem. Phys. 17, 1653-1672. https://doi.org/10.5194/acp-17-1653-2017 DOI: https://doi.org/10.5194/acp-17-1653-2017

-[11] Mo, Y., Li, J., Cheng, Z., Zhong, G., Zhu, S., Tian, C., Chen, Y., Zhang, G., 2021. Dual Carbon Isotope-Based Source Apportionment and Light Absorption Properties of Water-Soluble Organic Carbon in PM2.5 Over China. J. Geophys. Res. Atmos. 126. https://doi.org/10.1029/2020JD033920 DOI: https://doi.org/10.1029/2020JD033920

-[12] Wu, G., Ram, K., Fu, P., Wang, W., Zhang, Y., Liu, X., Stone, E.A., Pradhan, B.B., Dangol, P.M., Panday, A.K., Wan, X., Bai, Z., Kang, S., Zhang, Q., Cong, Z., 2019, Water-Soluble Brown Carbon in Atmospheric Aerosols from Godavari (Nepal), a Regional Representative of South Asia. Environ. Sci. Technol. 53, 3471-3479. DOI: https://doi.org/10.1021/acs.est.9b00596

-[13] Moosmiiller, H., Chakrabarty, R.K., Ehlers, K.M., Arnott, W.P., 2011. Absorption Ángstróm coefficient, brown carbon, and aerosols: Basic concepts, bulk matter, and spherical particles. Atmos. Chem. Phys. 11, 1217-1225. https://doi.org/10.5194/acp-11-1217-2011 DOI: https://doi.org/10.5194/acp-11-1217-2011

-[14] SSA, 2014. NOM-025-SSA1-2014. “Salud ambiental. Valores límites permisibles para la concentración de partículas suspendidas PM10 y PM2.5 en el aire ambiente y criterios para su evaluación”, México, D.F.

-[15] Yu, X., Song, W., Yu, Q., Li, S., Zhu, M., Zhang, Y., Deng, W., Yang, W., Huang, Z., Bi, X., Wang, X., 2018. Fast screening compositions of PM2.5 by ATR-FTIR: Comparison with results from IC andOC/EC analyzers. J. Environ. Sci. 71, 76-88. https://doi.org/https://doi.org/10.1016/¡.jes.2017.11.021 DOI: https://doi.org/10.1016/j.jes.2017.11.021

-[16] Zeb, B., Alam, K., Sorooshian, A., Blaschke, T., Ahmad, I., Shahid, I., 2018. On the morphology and composition of particulate matter in an urban environment. Aerosol Air Qual. Res. 18, 1431—1447. https://doi.org/10.4209/aaqr.2017.09.0340 DOI: https://doi.org/10.4209/aaqr.2017.09.0340

-[17] Aldabe, J., Elustondo, D., Santamaría, C., Lasheras, E., Pandolfi, M., Alastuey, A., Querol, X., Santamaría, J.M., 2011. Chemical characterisation and source apportionment of PM2.5 and PM10 at rural, urban and traffic sites in Navarra (North of Spain). Atmos. Res. 102, 191-205. https://doi.org/https://doi.org/10.1016/j.atmosres.2011.07.003 DOI: https://doi.org/10.1016/j.atmosres.2011.07.003

-[18] Martin, S.T., Hung, H.M., Park, R.J., Jacob, D.J., Spurr, R.J.D., Chance, K. V., Chin, M., 2004. Effects of the physical state of tropospheric ammonium-sulfate-nitrate particles on global aerosol direct radiative forcing. Atmos. Chem. Phys. 4, 183-214. https://doi.org/10.5194/acp-4-183-2004 DOI: https://doi.org/10.5194/acp-4-183-2004

-[19] Siciliano, T., Siciliano, M., Malitesta, C., Proto, A., Cucciniello, R., Giove, A., lacobellis, S., Genga, A., 2018. Carbonaceous PM10 and PM2.5 and secondary organic aerosol in a coastal rural site near Brindisi (Southern Italy). Environ. Sci. Pollut. Res. 25, 23929-23945. https://doi.org/10.1007/s11356-018-2237-2 DOI: https://doi.org/10.1007/s11356-018-2237-2

-[20] Ravisankar, R., Kiruba, S., HEswaran, P., Senthilkumar, G., Chandrasekaran, A., 2010. Mineralogical Characterization Studies of Ancient Potteries of Tamilnadu, India by FT-IR Spectroscopic Technique. E-Journal Chem. 7, 643218. https://doi.org/10.1155/2010/643218 DOI: https://doi.org/10.1155/2010/643218

-[21] Shaka”, H., Saliba, N.A., 2004. Concentration measurements and chemical composition of PM10-2.5 and PM2.5 at a coastal site in Beirut, Lebanon. Atmos. Environ. 38, 523-531. https://doi.org/10.1016/j.atmosenv.2003.10.009 DOI: https://doi.org/10.1016/j.atmosenv.2003.10.009

-[22] Atzei, D., Fantauzzi, M., Rossi, A., Fermo, P., Piazzalunga, A., Valli, G., Vecchi, R., 2014. Applied Surface Science Surface chemical characterization of PM 10 samples by XPS. Appl. Surf. Sci. 307, 120-128. https://doi.org/10.1016/¡.apsusc.2014.03.178 DOI: https://doi.org/10.1016/j.apsusc.2014.03.178

-[23] Torrent, J., Barrón, V., 2015. Diffuse reflectance spectroscopy. Methods Soil Anal. Part 5 Mineral. Methods S, 367-385. https://doi.org/10.2136/sssabookserS.5.c13 DOI: https://doi.org/10.2136/sssabookser5.5.c13

-[24] Nagabhushana, H., Nagaraju, G., Nagabhushana, B.M., Shivakumara, C., Chakradhar, R.P.S., 2010. Hydrothermal synthesis and characterization of

CaSO4 pseudomicrorods. Philos. Mag. Lett. 90, 289-298. https://doi.org/10.1080/09500831003636051 DOI: https://doi.org/10.1080/09500831003636051

-[25] Al Omari, M.M.H., Rashid, 1.S., Qinna, N.A., Jaber, A.M., Badwan, A.A., 2016. Chapter Two - Calcium Carbonate, in: Brittain, H.G. (Ed.), Profiles of Drug Substances, Excipients and Related Methodology. Academic Press, pp. 31-

https://doi.org/https://doi.org/10.1016/bs.podrm.2015.11.003 DOI: https://doi.org/10.1016/bs.podrm.2015.11.003

-[26] Zent, A.P., Ichimura, A.S., Quinn, R.C., Harding, H.K., 2008. The formation and stability of the superoxide radical (O2-) on rock-forming minerals: Band gaps, hydroxylation state, and implications for Mars oxidant chemistry. J. Geophys. Res. Planets 113. https://doi.org/https://doi.org/10.1029/2007JE003001 DOI: https://doi.org/10.1029/2007JE003001

-[27] Liu, C., Chung, C. E., Yin, Y., and Schnaiter, M. (2018). The Absorption Ángstróm Exponent of Black Carbon: from Numerical Aspects. Atmos. Chem. Phys. 18, 6259-6273. doi:10.5194/acp-18- 6259-2018 DOI: https://doi.org/10.5194/acp-18-6259-2018

-[28] Liu, J., Bergin, M., Guo, H., King, L., Kotra, N., Edgerton, E., et al. (2013). Sizeresolved Measurements of Brown Carbon inWater and Methanol Extracts and Estimates of Their Contribution to Ambient Fine-Particle Light Absorption. Atmos. Chem. Phys. 13, 12389— 12404. doi:10.5194/acp-13-12389-2013. DOI: https://doi.org/10.5194/acp-13-12389-2013

-[29] Satish, R., Shamjad, P., Thamban, N., Tripathi, S., and Rastogi, N. (2017). Temporal Characteristics of Brown Carbon over the Central Indo-Gangetic

Plain. Environ. Sci. Technol. 51, 6765-6772. doi:10.1021/acs.est.7b00734. DOI: https://doi.org/10.1021/acs.est.7b00734

-[30] Yan, G., Kim, G., 2017. Speciation and Sources of Brown Carbon in Precipitation at Seoul, Korea: Insights from Excitation—Emission Matrix Spectroscopy and Carbon Isotopic Analysis. Environ. Sci. Technol. 51, 11580-11587. https://doi.org/10.1021/acs.est.7002892 DOI: https://doi.org/10.1021/acs.est.7b02892

-[31] Yuan, W., Huang, R.J., Yang, L., Guo, J., Chen, Z., Duan, J., Wang, T., N1, H., Han, Y., Li, Y., Chen, Q., Chen, Y., Hoffmann, T., O"Dowd, C., 2020. Characterization of the light-Absorbing properties, chromophore composition and sources of brown

carbon aerosol in Xian, northwestern China. Atmos. Chem. Phys. 20, 5129-5144. https://doi.org/10.5194/acp-20-5129-2020 DOI: https://doi.org/10.5194/acp-20-5129-2020

-[32] Kirillova, E. N., Andersson, A., Tiwari, S., Srivastava, A. K., Bisht, D. S., and Gustafsson, Ó. (014). Water-soluble Organic Carbon Aerosols during a Full New Delhi Winter: Isotope-Based Source Apportionment and Optical Properties. J.

Geophys. Res. Atmos. 119, 3476-3485. doi:10.1002/2013JD020041 DOI: https://doi.org/10.1002/2013JD020041

-[33] Kim, H., Kim, J.Y., Jin, H.C., Lee, J.Y., Lee, S.P., 2016. Seasonal variations in the light-absorbing properties of water-soluble and insoluble organic aerosols in Seoul, Korea. Atmos. Environ. 129, 234-242. https://doi.org/10.1016/.atmosenv.2016.01.042 DOI: https://doi.org/10.1016/j.atmosenv.2016.01.042

-[34] Hecobian, A., Zhang, X., Zheng, M., Frank, N., Edgerton, E.S., Weber, R.J., 2010. Water-soluble organic aerosol material and the light-absorption characteristics of aqueous extracts measured over the Southeastern United States. Atmos. Chem. DOI: https://doi.org/10.5194/acp-10-5965-2010

Phys. 10, 5965-5977. https://doi.org/10.5194/acp10-5965-2010

-[35] Pokhrel, R.P., Beamesderfer, E.R., Wagner, N.L., Langridge, J.M., Lack, D.A., Jayarathne, T., Stone, E.A., Stockwell, C.E., Yokelson, R.J., Murphy, S.M., 2017. Relative importance of black carbon, brown carbon, and absorption enhancement from clear coatings in biomass burning emissions. Atmos. Chem. Phys. 17, 5063-5078. https://doi.org/10.5194/acp-17-5063-2017 DOI: https://doi.org/10.5194/acp-17-5063-2017

Published

2022-12-13

How to Cite

T. González, L., Longoria Rodríguez, F. E., Acuña Askar, K., Alfaro Barbosa, J. M., Kharisov, B., & Mendoza, A. (2022). Características químicas y ópticas del material PM2.5 y del carbono orgánico soluble en agua (WSOC) colectado en una zona del Area Metropolitana de Monterrey . Quimica Hoy, 11(04), 37–43. https://doi.org/10.29105/qh11.04-311