Síntesis de ZnO vía química verde con extracto de Bauhinia variegata para aplicaciones optoelectrónicas
DOI:
https://doi.org/10.29105/qh12.02-328Palabras clave:
Química verde, Semiconductor, ZnO, impurezas, wurtzitaResumen
Se reporta la síntesis de polvos de ZnO por un método de química verde utilizando extracto de Bauhinia variegata. Se
utilizaron los compuestos del extracto como agentes de transferencia química para la síntesis. Se pudo caracterizar como
wurtzita ZnO tipo n con una morfología de conglomerados de partículas cuasi esféricas con tamaños promedio de 70 nm.
Los análisis permitieron identificar impurezas de magnesio en la red cristalina que fue aportado por el extracto, así como
posibles defectos intrínsecos ocasionados por la deformación de calda cuando se sustituye el Zn2+ por el Mg2+, La
fotoluminiscencia del material supone la posibilidad de que el material se pueda utilizar como fotocatalizador ya que mostro
una sensibilidad a longitudes de onda del espectro visible. Se encontró que el ZnO sintetizado presenta una brecha de banda
reducida de 3.11 eV que puede ser interesante para diversas aplicaciones optoelectrónicas.
Descargas
Citas
- [1.] ´¨´´G. Mo, J. Ye, and W. Zhang, “Unusual electrochemical response of ZnO nanowires-decorated multiwalled carbon nanotubes”, Electrochimica Acta journal, vol. 55, pp. 511-515, 2009, doi: 10.1016/;.electacta.2009.09.005.
- [2.] X. Yin et al., “Massive Vacancy Concentration Yields Strong Room-Temperature Ferromagnetism in TwoDimensional ZnO”, Nano Lett, 2019, doi: 10.1021/acs.nanolett.9b02581.
- [3.] S. Shimizu, M. Saeed, T. lizuka, S. Ono, and K. Miwa, “Enhanced thermopower in ZnO two-dimensional electron gas”, vol. 113, mo. 23, 2016, doi: 10.1073/pnas.1525500113.
- [4.]M. D. Sharma, C. Mahala, and M. Basu, “Sensitization of vertically grown ZnO 2D thin sheets by MoSx for efficient charge separation process towards photoelectrochemical water splitting reaction”, Int J Hydrogen Energy, vol. 45, no. 22, pp. 12272-12282, 2020, doi: 10.1016/;.ijhydene.2020.02.190.
- [5.] S. Andrea, M. Hernández, and F. J. De Moure-flores, “Películas delgadas de óxidos semiconductores obtenidas por la técnica sol-gel”, Ciencia(QUAO, vol. 6, no. 2, pp. 1-10, 2013.
- [6.] L E. Paulauskas, G. E. Jellison, L. A. Boatner, and G. M. Brown, “Photoelectrochemical Stability and Alteration Products of n-Type Single Crystal ZnO Photoanodes”, International Journal of Electrochemistry, vol. 2011, pp. 1-10, 2011, doi: 10.4061/2011/563427.
- [7.] L. Gong, Z. Z. Ye, J. G. Lu, L. P. Zhu, J. Y. Huang, and B. H. Zhao, “Formation of p -type ZnMgO thin films by In — N codoping method”, Appl Surf Sci, vol. 256, pp. 627-630, 2009, doi: 10.1016/j.apsusc.2009.08.015.
- [8.] R. A. Hamouda et al., “Comparative study between zinc oxide nanoparticles synthesized by chemical and biological methods in view of characteritics, antibacterial activity and loading on antibiotics in vitro., Dig J Nanomater Biostruct, vol. 15, no. 1, pp. 93-106, 2020.
- [9.] H. Ghaffari et al., Inhibition of HIN1 influenza virus infection by zinc oxide nanoparticles: another emerging application of nanomedicine”, J Biomed Sci, vol. 4, pp. 1-11, 2019.
- [10.] F. Kayaci, S. Vempati, I Donmez, N. Biyikli, and T. Uyar, “Role of zinc interstitials and oxygen vacancies of ZnO in photocatalysis: A bottom-up approach to control defect density”, Nanoscale, vol. 6, no. 17, pp. 10224— 10234, 2014, doi: 10.1039/c4nr01887g.
- [11.] X. Li, J. Song, Y. Liu, and H. Zeng, “Controlling oxygen vacancies and properties of ZnO”, Current Applied Physics, vol. 14, no. 3, pp. 521 527, 2014, doi: 10.1016/;.cap.2014.01.007.
- [12.] I. Y. Y. Bu, “Sol-gel production of p-type ZnO thin film by using sodium doping”, Superlattices Microstruct, vol. 96, pp. 59-66, 2016, doi: 10.1016/;.spmi.2016.05.011.
- [13.] J, C. Fan, K. M. Sreekanth, Z. Xie, S. L. Chang, and K. V. Rao, *P-Type ZnO materials: Theory, growth, properties and devices”, Prog Mater Sci, vol. 58, no. 6, pp. 874-985, 2013, doi: 10.1016/;.pmatsci.2013.03.002.
- [14.] R. Dutta and N. Mandal, “Mg doping in wurtzite ZnO coupled with native point defects: A mechanism for enhanced n-type conductivity and photoluminescence”, Appl Phys Lett, vol. 101, no. 4, 2012, doi: 10.1063/1.4738990.
- [15.] T. Makino, Y. Segawa, A. Ohtomo, and T. Yasuda, “Band gap engineering based on MgxZn1-x0 and CdyZn1-yO ternary alloy films Band gap engineering based on MgxZn1 — x0O and CdyZnl — yO ternary alloy films”, App! Phys Lett, no. March, pp. 10-14, 2001, doi: 10.1063/1.1350632.
- [16.] C. K. Zagal-Padilla and S. A. Gamboa, “Optoelectronic characterization of ZnO obtained by green synthesis of Zn-salt precursor in parsley extract”, J Alloys Compd, vol. 767, pp. 932-937, 2018, doi:10.1016/;.jallcom.2018.07.191.
- [17.] R. Torres-Colín, R. Duno De Stefano, and L. L. Can, “The genus Bauhinia (Fabaceae, Caesalpinioideae, Cercideae) in Yucatán Peninsula (Mexico, Belice and Guatemala)”.
- [18.] Y. A. Kulkarni and M. S. Garud, *Bauhinia variegata (Caesalpiniaceae) leaf extract: An effective treatment option in type l and type Il diabetes”, Biomedicine and Pharmacotherapy, vol. 83, pp. 122-129, Oct. 2016, doi: 10.1016/;.biopha.2016.06.025.
- [19.] Leila Airemlou, M. A. Behnajady, and K. Mahanpoor, “Response Surface Methodology Optimized Sol-Gel Synthesis of Ag, Mg co-Doped ZnO Nanoparticles with High Photocatalytic Activity”, Russian Journal of Physical Chemistry A, vol. 92, no. 10, pp. 2015-2024, 2018, doi: 10.1134/S0036024418100035.
- [20.] A. Diallo, B. D. Ngom, E. Park, and M. Maaza, “Green synthesis of ZnO nanoparticles by Aspalathus linearis: Structural $z optical properties”, J Alloys Compd, vol. 646, pp. 425-430, Jun. 2015, doi: 10.1016/;.jallcom.2015.05.242.
- [21] J. F. Jurado, “Estudio vibracional de nanoestructuras de ZnO sinterizadas por reaccion en estado solido”, Revista
Colombiana de Fisica, vol. 44, no. 1, 2012. K. Samanta, P. Bhattacharya, and R. S. Katiyar, Raman scattering studies of p-type Sb-doped ZnO thin films”, J Appl Phys, vol. 108, no. 11, 2010, doi: 10.1063/1.3516493.
- [22] S. Kanaparthi and S. Govind Singh, “Highly sensitive and ultra-fast responsive ammonia gas sensor based on 2D ZnO nanoflakes”, Mater Sci Energy Technol, vol. 3, pp. 91-96, 2020, doi: 10.1016/j.mset.2019.10.010.
- [23] L. Chen, A. Wang, Z. Xiong, S. Shi, and Y. Gao, “Effect of hole doping and strain modulations on electronic structure and magnetic properties in ZnO monolayer”, Appl Surf Sci, vol. 467-468, no. April 2018, pp. 22-29, 2019, doi: 10.1016/j.apsusc.2018.10.132.
- [24] A. Chaves et al., “Bandgap engineering of twodimensional semiconductor materials”, NPJ 2D Mater Appl, vol. 4, no. 1, 2020, doi: 10.1038/541699-020- 00162-4.
- [25] N. Shakti, C. Devi, A. K. Patra, P. S. Gupta, and S. Kumar, “Lithium doping and photoluminescence properties of ZnO nanorods”, A1P Adv, vol. 8, no. 1, pp. 1-6, 2018, doi: 10.1063/1.5008863.
- [26] A. Antony et al., *A study of 8MeV e-beam on localized defect states in ZnO nanostructures and its role on photoluminescence and third harmonic generation”, J Lumin, vol. 207, pp. 321-332, Mar. 2019, doi: 10.1016/¡.jlumin.2018.11.043.
- [27] G. Golan, A. Axelevitch, B. Gorenstein, and V. Manevych, “*Hot-Probe method for evaluation of impurities concentration in semiconductors”, Microelectronics J, vol. 37, no. 9, pp. 910-915, 2006, doi: 10.1016/¡.mejo.2006.01.014.
- [28] B. W. C. Au, K. Y. Chan, Y. K. Sin, and Z. N. Ng, “Hotpoint probe measurements of N-type and P-type ZnO films”, Microelectronics International, vol. 34, no. 1, pp. 30-34, 2017, doi: 10.1108/MI-08-2015-0067.