Síntesis de ZnO vía química verde con extracto de Bauhinia variegata para aplicaciones optoelectrónicas

Authors

  • Carlos Díaz Gómez Universidad Nacional Autónoma de México

DOI:

https://doi.org/10.29105/qh12.02-328

Keywords:

Química verde, Semiconductor, ZnO, impurezas, wurtzita

Abstract

The synthesis of ZnO powders by a green chemistry method using Bauhinia variegata extract is reported. The compounds
of the extract were used as chemical transfer agents for synthesis. It could be characterized as n-type ZnO wurtzite with a
quasi-spherical particle cluster morphology with average sizes of 70 nm. The analyses allowed to identify impurities of
magnesium in the crystal lattice that was contributed by the extract, as well as possible intrinsic defects caused by the
deformation of calda when Zn2+ is replaced by Mg2+. The photoluminescence of the material implies the possibility that the
material can be used as a photocatalyst since 1t showed a sensitivity to wavelengths of the visible spectrum. It was found
that the synthesized ZnO presents a reduced band gap of 3.11 eV that may be interesting for various optoelectronic
applications.

Downloads

Download data is not yet available.

Author Biography

Carlos Díaz Gómez, Universidad Nacional Autónoma de México

Instituto de Energías Renovables

References

- [1.] ´¨´´G. Mo, J. Ye, and W. Zhang, “Unusual electrochemical response of ZnO nanowires-decorated multiwalled carbon nanotubes”, Electrochimica Acta journal, vol. 55, pp. 511-515, 2009, doi: 10.1016/;.electacta.2009.09.005.

- [2.] X. Yin et al., “Massive Vacancy Concentration Yields Strong Room-Temperature Ferromagnetism in TwoDimensional ZnO”, Nano Lett, 2019, doi: 10.1021/acs.nanolett.9b02581.

- [3.] S. Shimizu, M. Saeed, T. lizuka, S. Ono, and K. Miwa, “Enhanced thermopower in ZnO two-dimensional electron gas”, vol. 113, mo. 23, 2016, doi: 10.1073/pnas.1525500113.

- [4.]M. D. Sharma, C. Mahala, and M. Basu, “Sensitization of vertically grown ZnO 2D thin sheets by MoSx for efficient charge separation process towards photoelectrochemical water splitting reaction”, Int J Hydrogen Energy, vol. 45, no. 22, pp. 12272-12282, 2020, doi: 10.1016/;.ijhydene.2020.02.190.

- [5.] S. Andrea, M. Hernández, and F. J. De Moure-flores, “Películas delgadas de óxidos semiconductores obtenidas por la técnica sol-gel”, Ciencia(QUAO, vol. 6, no. 2, pp. 1-10, 2013.

- [6.] L E. Paulauskas, G. E. Jellison, L. A. Boatner, and G. M. Brown, “Photoelectrochemical Stability and Alteration Products of n-Type Single Crystal ZnO Photoanodes”, International Journal of Electrochemistry, vol. 2011, pp. 1-10, 2011, doi: 10.4061/2011/563427.

- [7.] L. Gong, Z. Z. Ye, J. G. Lu, L. P. Zhu, J. Y. Huang, and B. H. Zhao, “Formation of p -type ZnMgO thin films by In — N codoping method”, Appl Surf Sci, vol. 256, pp. 627-630, 2009, doi: 10.1016/j.apsusc.2009.08.015.

- [8.] R. A. Hamouda et al., “Comparative study between zinc oxide nanoparticles synthesized by chemical and biological methods in view of characteritics, antibacterial activity and loading on antibiotics in vitro., Dig J Nanomater Biostruct, vol. 15, no. 1, pp. 93-106, 2020.

- [9.] H. Ghaffari et al., Inhibition of HIN1 influenza virus infection by zinc oxide nanoparticles: another emerging application of nanomedicine”, J Biomed Sci, vol. 4, pp. 1-11, 2019.

- [10.] F. Kayaci, S. Vempati, I Donmez, N. Biyikli, and T. Uyar, “Role of zinc interstitials and oxygen vacancies of ZnO in photocatalysis: A bottom-up approach to control defect density”, Nanoscale, vol. 6, no. 17, pp. 10224— 10234, 2014, doi: 10.1039/c4nr01887g.

- [11.] X. Li, J. Song, Y. Liu, and H. Zeng, “Controlling oxygen vacancies and properties of ZnO”, Current Applied Physics, vol. 14, no. 3, pp. 521 527, 2014, doi: 10.1016/;.cap.2014.01.007.

- [12.] I. Y. Y. Bu, “Sol-gel production of p-type ZnO thin film by using sodium doping”, Superlattices Microstruct, vol. 96, pp. 59-66, 2016, doi: 10.1016/;.spmi.2016.05.011.

- [13.] J, C. Fan, K. M. Sreekanth, Z. Xie, S. L. Chang, and K. V. Rao, *P-Type ZnO materials: Theory, growth, properties and devices”, Prog Mater Sci, vol. 58, no. 6, pp. 874-985, 2013, doi: 10.1016/;.pmatsci.2013.03.002.

- [14.] R. Dutta and N. Mandal, “Mg doping in wurtzite ZnO coupled with native point defects: A mechanism for enhanced n-type conductivity and photoluminescence”, Appl Phys Lett, vol. 101, no. 4, 2012, doi: 10.1063/1.4738990.

- [15.] T. Makino, Y. Segawa, A. Ohtomo, and T. Yasuda, “Band gap engineering based on MgxZn1-x0 and CdyZn1-yO ternary alloy films Band gap engineering based on MgxZn1 — x0O and CdyZnl — yO ternary alloy films”, App! Phys Lett, no. March, pp. 10-14, 2001, doi: 10.1063/1.1350632.

- [16.] C. K. Zagal-Padilla and S. A. Gamboa, “Optoelectronic characterization of ZnO obtained by green synthesis of Zn-salt precursor in parsley extract”, J Alloys Compd, vol. 767, pp. 932-937, 2018, doi:10.1016/;.jallcom.2018.07.191.

- [17.] R. Torres-Colín, R. Duno De Stefano, and L. L. Can, “The genus Bauhinia (Fabaceae, Caesalpinioideae, Cercideae) in Yucatán Peninsula (Mexico, Belice and Guatemala)”.

- [18.] Y. A. Kulkarni and M. S. Garud, *Bauhinia variegata (Caesalpiniaceae) leaf extract: An effective treatment option in type l and type Il diabetes”, Biomedicine and Pharmacotherapy, vol. 83, pp. 122-129, Oct. 2016, doi: 10.1016/;.biopha.2016.06.025.

- [19.] Leila Airemlou, M. A. Behnajady, and K. Mahanpoor, “Response Surface Methodology Optimized Sol-Gel Synthesis of Ag, Mg co-Doped ZnO Nanoparticles with High Photocatalytic Activity”, Russian Journal of Physical Chemistry A, vol. 92, no. 10, pp. 2015-2024, 2018, doi: 10.1134/S0036024418100035.

- [20.] A. Diallo, B. D. Ngom, E. Park, and M. Maaza, “Green synthesis of ZnO nanoparticles by Aspalathus linearis: Structural $z optical properties”, J Alloys Compd, vol. 646, pp. 425-430, Jun. 2015, doi: 10.1016/;.jallcom.2015.05.242.

- [21] J. F. Jurado, “Estudio vibracional de nanoestructuras de ZnO sinterizadas por reaccion en estado solido”, Revista

Colombiana de Fisica, vol. 44, no. 1, 2012. K. Samanta, P. Bhattacharya, and R. S. Katiyar, Raman scattering studies of p-type Sb-doped ZnO thin films”, J Appl Phys, vol. 108, no. 11, 2010, doi: 10.1063/1.3516493.

- [22] S. Kanaparthi and S. Govind Singh, “Highly sensitive and ultra-fast responsive ammonia gas sensor based on 2D ZnO nanoflakes”, Mater Sci Energy Technol, vol. 3, pp. 91-96, 2020, doi: 10.1016/j.mset.2019.10.010.

- [23] L. Chen, A. Wang, Z. Xiong, S. Shi, and Y. Gao, “Effect of hole doping and strain modulations on electronic structure and magnetic properties in ZnO monolayer”, Appl Surf Sci, vol. 467-468, no. April 2018, pp. 22-29, 2019, doi: 10.1016/j.apsusc.2018.10.132.

- [24] A. Chaves et al., “Bandgap engineering of twodimensional semiconductor materials”, NPJ 2D Mater Appl, vol. 4, no. 1, 2020, doi: 10.1038/541699-020- 00162-4.

- [25] N. Shakti, C. Devi, A. K. Patra, P. S. Gupta, and S. Kumar, “Lithium doping and photoluminescence properties of ZnO nanorods”, A1P Adv, vol. 8, no. 1, pp. 1-6, 2018, doi: 10.1063/1.5008863.

- [26] A. Antony et al., *A study of 8MeV e-beam on localized defect states in ZnO nanostructures and its role on photoluminescence and third harmonic generation”, J Lumin, vol. 207, pp. 321-332, Mar. 2019, doi: 10.1016/¡.jlumin.2018.11.043.

- [27] G. Golan, A. Axelevitch, B. Gorenstein, and V. Manevych, “*Hot-Probe method for evaluation of impurities concentration in semiconductors”, Microelectronics J, vol. 37, no. 9, pp. 910-915, 2006, doi: 10.1016/¡.mejo.2006.01.014.

- [28] B. W. C. Au, K. Y. Chan, Y. K. Sin, and Z. N. Ng, “Hotpoint probe measurements of N-type and P-type ZnO films”, Microelectronics International, vol. 34, no. 1, pp. 30-34, 2017, doi: 10.1108/MI-08-2015-0067.

Published

2023-11-19

How to Cite

Gómez, C. D. (2023). Síntesis de ZnO vía química verde con extracto de Bauhinia variegata para aplicaciones optoelectrónicas . Quimica Hoy, 12(02), 3–8. https://doi.org/10.29105/qh12.02-328