Síntesis de nanopartículas de PdACu soportadas sobre carbón para la oxidación de etanol y bio-alcohol
DOI:
https://doi.org/10.29105/qh12.02-332Palabras clave:
Bio-alcohol, Activated carbon, Electro-oxidation, Ethanol, NanoparticlesResumen
Este trabajo reporta la síntesis de un catalizador bimetálico compuesto por nanopartículas de Pd y Cu soportados en carbón
Vulcan activado (Pd-Cu/C). El catalizador Pd-Cu/C se sintetizó por el método de poliol asistido mediante microondas y se
caracterizó mediante el estudio de sus propiedades fisicoquímicas y estructurales con diversas técnicas, tales como:
Microscopía electrónica de barrido, Espectroscopía de dispersión de energía, Espectrometría de retrodispersión de
Rutherford y Difracción de Rayos —X. Estas técnicas mostraron la formación de la aleación de Pd-Cu/C con una estructura
cubica cristalina. La caracterización electroquímica del catalizador reportó una excelente actividad en la electro-oxidación
de etanol (1.0 M) y bio-etanol (1.0 M) en medio alcalino (1 M KOH). Asimismo, el catalizador mostró ser estable durante
100 ciclos (con un potencial aplicado de -0.19 V vs el electrodo de Calomel saturado) sin mostrar envenenamiento en el
catalizador por CO ni generar sub-productos.
Descargas
Citas
-[1] Jiang, Z., Fu, S., Zhao, W., Liu, X., Wang, F., Cui, M., & Dong, L. (2023). Fabrication of dendritic PdCu alloy supported on 3D N-doped hollow graphene for efficient ethanol electrooxidation. Turkish Journal of Chemistry, 47(1), 207-217. https://doi.org/10.55730/1300-0527.3530
https://journals.tubitak.gov.tr/chem/vol47/iss1/21
-[2] Gojkovic, S. L., Obradovic, M., Laénjevac, U., Radmilovic, V., Gavrilovic-Wohlmuther, A., Kovac, J., 8 Radmilovié, V. Palladium-Copper Bimetallic Surfaces as Electrocatalysts for the Ethanol Oxidation in an Alkaline Medium. Available at 5
SSRN 4455250. http://dx.doi.org/10.2139/ssrn.4455250
-[3] Ipadeola, A. K., Abdelgawad, A., Salah, B., Ghanem, A., 5 o Chitt, M., Abdullah, A. M., £ Eid, K. (2023). Self-standing TE foam-like Pd-based alloys nanostructures for efficient electrocatalytic ethanol oxidation. International Journal ofHydrogen Energy. 0360-3199 https://doi.org/10.1016/j.ijhydene.2023.04.149
-[4] Zheng, Y., Wan, X., Cheng, X., Cheng, K., Dai, Z., € Liu, Z. (2020). Advanced catalytic materials for ethanol oxidation in direct ethanol fuel cells. Catalysts, 10(2), 166. https://doi.org/10.3390/catal10020166
-[5] Ye, N., Zhao, P., Qi, X., Sheng, W., Jiang, Z., € Fang, T. (2022). Ethanol electro-oxidation on the PdSn-TaN/C catalyst in alkaline media: Making TaN capable of splitting CC bond. Applied Catalysis B: Environmental, 314,
-[6] Monyoncho, E. A., Woo, T. K., 8 Baranova, E. A. (2018). Ethanol electrooxidation reaction in alkaline media for direct ethanol fuel cells. https://doi.org/10.1039/9781788013895- 00001
-[7] Zhiani, M., Gholamian, M., £ Barzi, S. (2022). Pd electrodeposition on a novel substrate of reduced graphene oxide/poly (melem formaldehyde) nanocomposite as an active and stable catalyst for ethanol electrooxidation in alkaline media. International Journal of Hydrogen Energy, 47(6), 3801-3813. https://doi.org/10.1016/j.ijhydene.2021.11.033
-[8] Fu, X., Wan, C., Huang, Y., % Duan, X. (2022). Noble metal based electrocatalysts for alcohol oxidation reactions in alkaline media. Advanced Functional Materials, 32(11), 2106401. https://doi.org/10.1002/adfm.202106401
-[9] Abdurrashid, H., Merican, Z. M. A., 8 Musa, S. G. (2022). Recent advances in catalytic oxidative desulfurization of fuel oil-A review. Journal of Industrial and Engineering Chemistry. https://doi.org/10.1016/¡.jiec.2022.05.023
-[10] Yang, Y., Liu, F., Han, X., Wang, X., Dong, D., Chen, Y., ... £ Ling, Y. (2022). Highly efficient and stable fuel-catalyzed dendritic microchannels for dilute ethanol fueled solid oxide fuel cells. Applied Energy, 307, 118222. https://doi.org/10.1016/¡.apenergy.2021.118222
-[11] Chu, M., Huang, J., Gong, J., Qu, Y., Chen, G., Yang, H., 82 Zhang, Q. (2022). Synergistic combination of Pd nanosheets and porous Bi (OH) 3 boosts activity and durability for ethanol oxidation reaction. Nano Research, 15(5), 3920-3926. https://doi.org/10.1007/s12274-021-4049-9
-[12] Tan, X., Wu, R., Zhu, Q., Gou, Q., Zhang, Y., Huang, H., & Fu, L. (2022). Pd Nanoparticles Anchored on Carbon
Nanotubes/Covalent Organic Frameworks for Catalytic Ethanol Electrooxidation. ACS Applied Nano Materials, 5(1), 597-
https://doi.org/10.1021/acsanm.1c03389
-[13] Fu, X., Wan, C., Huang, Y., & Duan, X. (2022). Noble metal based electrocatalysts for alcohol oxidation reactions in alkaline media. Advanced Functional Materials, 32(11), 2106401. https://doi.org/10.1002/adfm.202106401
-[14] Chu, X., Li, J., Qian, W., 8 Xu, H. (2023). Pd-Based Metallenes for Fuel Cell Reactions. The Chemical Record, 23(2), e202200222. https://doi.org/10.1002/tcr.202200222
-[15] Yang, Q., Lin, H., Wang, X., Zhang, L. Y., Jing, M., Yuan, W., & Li, C. M. (2022). Dynamically self-assembled adeninemediated synthesis of pristine graphene-supported clean Pd nanoparticles with superior electrocatalytic performance toward formic acid oxidation. Journal of Colloid and Interface Science, 613, 515-523. https://doi.org/10.1016/.jcis.2022.01.061
-[16] Lv, H., Wang, Y., Lopes, A., Xu, D., & Liu, B. (2019). Ultrathin PdAg single-crystalline nanowires enhance ethanol electrocatalytic ethanol oxidation. International Journal of oxidation electrocatalysis. Applied Catalysis B: Environmental, 249, 116-125. https://doi.org/10.1016/;.apcatb.2019.02.068
-[17] Mardini, N., 8 Bicer, Y. (2021). Direct synthesis of formic acid as hydrogen carrier from CO2 for cleaner power generation through direct formic acid fuel cell. International Journal of Hydrogen Energy, 46(24), 13050-13060. https://doi.org/10.1016/¡.ijhydene.2021.01.124
-[18] Han, L., Ou, P., Liu, W., Wang, X., Wang, H. T., Zhang, R., ... £ Xin, H. L. (2022). Design of Ru-Ni diatomic sites for efficient alkaline hydrogen oxidation. Science Advances, 8(22), eabm3779. https: //www.science.org/doi/full/10.1126/sciadv.abm3779
-[19] Sadasivuni, K. K., Rattan, S., Waseem, S., Brahme, S. K., Kondawar, S. B., Ghosh, S., 8 Mazumdar, P. (2019). Silver nanoparticles and its polymer nanocomposites—Synthesis, optimization, biomedical usage, and its various applications. Polymer nanocomposites in biomedical engineering, 331-373. https://doi.org/10.1007/978-3-030-04741-2_13
-[20] Fornazier Filho, Y., da Cruz, A. C. C., Pedicini, R., Salgado, J. R. C., Rodrigues, R. V., Luz, P. P., 8 Ribeiro, J. (2022). PdAg/C Electrocatalysts Synthesized by Thermal Decomposition of Polymeric Precursors Improve Catalytic Activity for Ethanol Oxidation Reaction.m Catalysts, 12(1), 96. https://do1.org/10.3390/catal12010096
-[21] Ipadeola, A. K., Abdelgawad, A., Salah, B., Ghanem, A., Chitt, M., Abdullah, A. M., 8 Eid, K. (2023). Self-standing foam-like Pd-based alloys nanostructures for efficient electrocatalytic ethanol oxidation. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2023.04.149
-[22] Xing, G. N., Wei, D. Y., Zhang, H., Tian, Z. Q., 8 Li, J. F. (2023). Pd-based hNanocatalysts for Oxygen Reduction Reaction: Preparation, Performance, and in-Situ Characterization. Chinese Journal of Structural Chemistry, 100021. https://doi.org/10.1016/¡.cjsc.2023.100021
-[23] Xue, Q., Ge, Z., Yuan, Z., Huang, J., He, B., € Chen, Y. (2023). Au corea AuPtRh alloy shell nanowires for ethanol oxidation. Materials Today Physics, 100980. https://doi.org/10.1016/¡.mtphys.2023.100980
-[24] Si, L., Li, H., Zhang, Y., Zhang, D., An, X., Yao, M., $ Hu, S. (2023). Shape-dependence in seeded-growth of Pd-Cu solid solution from Pd nanostructure towards methanol oxidation electrocatalyst. Nano Research. https://doi.org/10.1007/512274- 023-5741-8
-[25] Wu, X., Ni, C., Man, J., Shen, X., Cui, S., ££ Chen, X. (2023). A strategy to promote the ORR electrocatalytic activity by the novel engineering bunched three-dimensional Pd-Cu alloy aerogel. Chemical Engineering Journal, 454, 140293. https://doi.org/10.1016/j.cej.2022.140293
-[26] Gong, Y., Ma, N., Yin, Y., Xue, J., Dong, C., 8 Guo, P. (2019). Synthesis of PdCu nanowire assembly and their catalytic activity toward ethanol oxidation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 583,123909. https://doi.org/10.1016/1.colsurfa.2019.123909
Ogo, S., & Sekine, Y. (2020). Recent progress in ethanol steam reforming using non-noble transition metal catalysts: A review. Fuel processing technology, 199, 106238. https://doi.org/10.1016/¡.fuproc.2019.106238
-[29] Bai, J., Liu, D., Yang, J., £ Chen, Y. (2019). Nanocatalysts for electrocatalytic oxidation of ethanol. ChemSusChem, 12(10), 2117-2132. https://doi.org/10.1002/cssc.201803063
-[29] Dewa, M., Elharati, M. A., Hussain, A. M., Miura, Y., Song, D., Fukuyama, Y., € Ha, S. (2022). Metal-supported solid oxide fuel cell system with infiltrated reforming catalyst layer for direct ethanol feed operation. Journal of Power Sources, 541, 231625. https://doi.org/10.1016/¡ ¡powsour.2022.231625
-[30] Zhao, J., Shi, R., Li, Z., Zhou, C., 8: Zhang, T. (2020). How to make use of methanol in green catalytic hydrogen production?. Nano Select, 10, 12-29. https://doi.org/10.1002/nano.202000010
-[31] Gholamian, M., Zhiani, M., & Barzi, S. (2021). A comparative study of Pd/rGO and Pd-Cu/rGO toward electrooxidation of low ethanol concentrations for fuel cellbased breath alcohol analyzer application. Journal of Applied Electrochemistry, 51, 1559-1571. https://doi.org/10.1007/s10800-021-01595-5
-[32] Wei-Da Kang, Yu-Chen Wei, Chen-Wei Liu, Kuan-Wen Wang. (011). Enhancement of electrochemical properties on Pd-Cu/C electrocatalysts toward ethanol oxidation by atmosphere induced surface and structural alteration. Electrochemistry Communications, 13(2), 162-165. https://doi.org/10.1016/].elecom.2010.12.003
-[33] Y. Debauge, M. Abon, J. Bertolini, J. Massardier and A. Rochefort, (1995). Synergistic alloying behaviour of PAS0CuS0 single crystals upon adsorption and co-adsorption of CO and NO. Appl. Surf. Sci., 90, 15-27. https://doi.org/10.1016/0169- 4332(95)00073-9