Control por Modo Deslizante Super-Twisting en Reactores Continuos de Tanque Agitado
DOI:
https://doi.org/10.29105/qh14.02-483Palabras clave:
Control de Procesos No Lineales, Diseño Basado en Lyapunov, Estabilidad en Tiempo Finito, Reactor Continuo de Tanque Agitado (CSTR), Control por Modo Deslizante Super-TwistingResumen
En este trabajo, se presenta un controlador por modo deslizante Super-Twisting en tiempo continuo (ST-SMC) con el fin de regular la temperatura y concentración en un reactor continuo de tanque agitado (CSTR). La metodología propuesta mejora la robustez y la suavidad de la señal de control usando un marco de estabilidad de Lyapunov y una estructura derivativa filtrada que atenúa oscilaciones sin afectar la convergencia en tiempo finito. A diferencia de los controladores PID y modos deslizantes clásicos, el diseño propuesto mantiene un seguimiento robusto ante incertidumbres paramétricas, no linealidades y perturbaciones no coincidentes. Las simulaciones en MATLAB-Simulink muestran reducciones de 42% en ISE, 37% en IAE y más del 80% en oscilaciones. El análisis de Lyapunov garantiza la estabilidad global y la convergencia en tiempo finito. Por lo tanto, la estrategia logra un equilibrio entre robustez, adaptabilidad y suavidad, constituyéndose como una alternativa sólida para la implementación en tiempo real en procesos termoquímicos no lineales, donde los controladores tradicionales no aseguran simultáneamente estabilidad y eficiencia energética.
Descargas
Citas
- [1]. Matušů, R., Şenol, B. y Pekař, L. (2020). Robust PI Control of Interval Plants With Gain and Phase Margin Specifications: Application to a Continuous Stirred Tank Reactor. IEEE Access, 8, 145372–145380. https://doi.org/10.1109/access.2020.3014684 DOI: https://doi.org/10.1109/ACCESS.2020.3014684
- [2]. Simorgh, A., Razminia, A. y Shiryaev, V. I. (2020). System identification and control design of a nonlinear continuously stirred tank reactor. Mathematics and Computers in Simulation, 173, 16–31. https://doi.org/10.1016/j.matcom.2020.01.010 DOI: https://doi.org/10.1016/j.matcom.2020.01.010
- [3]. Siddiqui, M. A., Anwar, M. N. y Laskar, S. H. (2021). Control of nonlinear jacketed continuous stirred tank reactor using different control structures. Journal of Process Control, 108, 112–124. https://doi.org/10.1016/j.jprocont.2021.11.005 DOI: https://doi.org/10.1016/j.jprocont.2021.11.005
- [4]. Sindhuja, P. P., Panda, A., Velappan, V. y Panda, R. C. (2023). Disturbance-observer-based finite time sliding mode controller with unmatched uncertainties utilizing improved cubature Kalman filter. Transactions of the Institute of Measurement and Control, 45(9), 1795–1812. https://doi.org/10.1177/01423312221140507 DOI: https://doi.org/10.1177/01423312221140507
- [5]. Abougarair, A. J. y Shashoa, N. A. A. (2021). Model Reference Adaptive Control for Temperature Regulation of Continuous Stirred Tank Reactor. Proceedings of the IEEE 2nd International Conference on Signal, Control and Communication (SCC), 276–281. https://doi.org/10.1109/scc53769.2021.9768396 DOI: https://doi.org/10.1109/SCC53769.2021.9768396
- [6]. Czyżniewski, M. y Łangowski, R. (2022). A robust sliding mode observer for non-linear uncertain biochemical systems. ISA Transactions, 123, 25–45. https://doi.org/10.1016/j.isatra.2021.05.040 DOI: https://doi.org/10.1016/j.isatra.2021.05.040
- [7]. Vásquez, M., Yanascual, J., Herrera, M., Prado, A. y Camacho, O. (2023). A hybrid sliding mode control based on a nonlinear PID surface for nonlinear chemical processes. Engineering Science and Technology, an International Journal, 40, 101361. https://doi.org/10.1016/j.jestch.2023.101361 DOI: https://doi.org/10.1016/j.jestch.2023.101361
- [8]. LAEPT Laboratory (2020). Robust Tracking Control for the Non-isothermal Continuous Stirred Tank Reactor. International Journal Bioautomation, 24(2), 115–123. https://doi.org/10.7546/ijba.2020.24.2.000615 DOI: https://doi.org/10.7546/ijba.2020.24.2.000615
- [9]. Petre, E., Selişteanu, D. y Roman, M. (2021). Advanced nonlinear control strategies for a fermentation bioreactor used for ethanol production. Bioresource Technology, 328, 124836. https://doi.org/10.1016/j.biortech.2021.124836 DOI: https://doi.org/10.1016/j.biortech.2021.124836
- [10]. Obando, C., Rojas, R., Ulloa, F. y Camacho, O. (2023). Dual-Mode Based Sliding Mode Control Approach for Nonlinear Chemical Processes. ACS Omega, 8(10), 9511–9525. https://doi.org/10.1021/acsomega.2c08201 DOI: https://doi.org/10.1021/acsomega.2c08201
- [11]. Hollweg, G. V., Evald, P. J. D. O., Milbradt, D. M. C., Tambara, R. V. y Gründling, H. A. (2021). Lyapunov stability analysis of discrete-time robust adaptive super-twisting sliding mode controller. International Journal of Control, 96(3), 614–627. https://doi.org/10.1080/00207179.2021.2008508 DOI: https://doi.org/10.1080/00207179.2021.2008508
- [12]. Zhou, W., Wang, Y. y Liang, Y. (2022). Sliding mode control for networked control systems: A brief survey. ISA Transactions, 124, 249–259. https://doi.org/10.1016/j.isatra.2020.12.049 DOI: https://doi.org/10.1016/j.isatra.2020.12.049
- [13]. Hollweg, G. V., Evald, P. J. D. O., Milbradt, D. M. C., Tambara, R. V. y Gründling, H. A. (2022). Design of continuous-time model reference adaptive and super-twisting sliding mode controller. Mathematics and Computers in Simulation, 201, 215–238. https://doi.org/10.1016/j.matcom.2022.05.014 DOI: https://doi.org/10.1016/j.matcom.2022.05.014
- [14]. Lascu, C., Argeseanu, A. y Blaabjerg, F. (2020). Supertwisting Sliding-Mode Direct Torque and Flux Control of Induction Machine Drives. IEEE Transactions on Power Electronics, 35(5), 5057–5065. https://doi.org/10.1109/TPEL.2019.2944124 DOI: https://doi.org/10.1109/TPEL.2019.2944124
- [15]. Gurumurthy, G. y Das, D. K. (2021). Terminal sliding mode disturbance observer based adaptive super twisting sliding mode controller design for a class of nonlinear systems. European Journal of Control, 57, 232–241. https://doi.org/10.1016/j.ejcon.2020.05.004 DOI: https://doi.org/10.1016/j.ejcon.2020.05.004
- [16]. Ahmed, S., Muhammad Adil, H. M., Ahmad, I., Azeem, M. K., e Huma, Z. y Abbas Khan, S. (2020). Supertwisting Sliding Mode Algorithm Based Nonlinear MPPT Control for a Solar PV System with Artificial Neural Networks Based Reference Generation. Energies, 13(14), 3695. https://doi.org/10.3390/en13143695 DOI: https://doi.org/10.3390/en13143695
- [17]. Charfeddine, S., Boudjemline, A., Ben Aoun, S., Jerbi, H., Kchaou, M., Alshammari, O., Elleuch, Z. y Abbassi, R. (2021). Design of a Fuzzy Optimization Control Structure for Nonlinear Systems: A Disturbance-Rejection Method. Applied Sciences, 11(6), 2612. https://doi.org/10.3390/app11062612 DOI: https://doi.org/10.3390/app11062612
- [18]. Xin, L.-P., Yu, B., Zhao, L. y Yu, J. (2020). Adaptive fuzzy backstepping control for a two continuous stirred tank reactors process based on dynamic surface control approach. Applied Mathematics and Computation, 377, 125138. https://doi.org/10.1016/j.amc.2020.125138 DOI: https://doi.org/10.1016/j.amc.2020.125138
- [19]. Herrera, M., Camacho, O., Leiva, H. y Smith, C. (2020). An approach of dynamic sliding mode control for chemical processes. Journal of Process Control, 85, 112–120. https://doi.org/10.1016/j.jprocont.2019.11.008 DOI: https://doi.org/10.1016/j.jprocont.2019.11.008
- [20]. González, J. A. C., Salas-Peña, O. y De León-Morales, J. (2021). Observer-based super twisting design: A comparative study on quadrotor altitude control. ISA Transactions, 109, 307–314. https://doi.org/10.1016/j.isatra.2020.10.026 DOI: https://doi.org/10.1016/j.isatra.2020.10.026
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Abraham Efraim Rodríguez Mata, Pablo Antonio Perez Lopez, Victor Alejandro Gonzalez Huit, Ricardo E. Lozoya Ponce, Raymundo Soto Soto, Eduardo Jiménez López

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.