Control por Modo Deslizante Super-Twisting en Reactores Continuos de Tanque Agitado

Authors

  • Abraham Efraim Rodríguez Mata Instituto Tecnológico de Chihuahua
  • Pablo Antonio Perez Lopez Universidad Autónoma del Estado de Hidalgo
  • Victor Alejandro Gonzalez Huit Instituto Tecnológico de Querétaro
  • Ricardo E. Lozoya Ponce Instituto Tecnológico de Chihuahua
  • Raymundo Soto Soto Universidad Tecnológica de México
  • Eduardo Jiménez López Universidad Autónoma del Estado de México

DOI:

https://doi.org/10.29105/qh14.02-483

Keywords:

Control de Procesos No Lineales, Diseño Basado en Lyapunov, Estabilidad en Tiempo Finito, Reactor Continuo de Tanque Agitado (CSTR), Control por Modo Deslizante Super-Twisting

Abstract

En este trabajo, se presenta un controlador por modo deslizante Super-Twisting en tiempo continuo (ST-SMC) con el fin de regular la temperatura y concentración en un reactor continuo de tanque agitado (CSTR). La metodología propuesta mejora la robustez y la suavidad de la señal de control usando un marco de estabilidad de Lyapunov y una estructura derivativa filtrada que atenúa oscilaciones sin afectar la convergencia en tiempo finito. A diferencia de los controladores PID y modos deslizantes clásicos, el diseño propuesto mantiene un seguimiento robusto ante incertidumbres paramétricas, no linealidades y perturbaciones no coincidentes. Las simulaciones en MATLAB-Simulink muestran reducciones de 42% en ISE, 37% en IAE y más del 80% en oscilaciones. El análisis de Lyapunov garantiza la estabilidad global y la convergencia en tiempo finito. Por lo tanto, la estrategia logra un equilibrio entre robustez, adaptabilidad y suavidad, constituyéndose como una alternativa sólida para la implementación en tiempo real en procesos termoquímicos no lineales, donde los controladores tradicionales no aseguran simultáneamente estabilidad y eficiencia energética.

Downloads

Download data is not yet available.

References

- [1]. Matušů, R., Şenol, B. y Pekař, L. (2020). Robust PI Control of Interval Plants With Gain and Phase Margin Specifications: Application to a Continuous Stirred Tank Reactor. IEEE Access, 8, 145372–145380. https://doi.org/10.1109/access.2020.3014684 DOI: https://doi.org/10.1109/ACCESS.2020.3014684

- [2]. Simorgh, A., Razminia, A. y Shiryaev, V. I. (2020). System identification and control design of a nonlinear continuously stirred tank reactor. Mathematics and Computers in Simulation, 173, 16–31. https://doi.org/10.1016/j.matcom.2020.01.010 DOI: https://doi.org/10.1016/j.matcom.2020.01.010

- [3]. Siddiqui, M. A., Anwar, M. N. y Laskar, S. H. (2021). Control of nonlinear jacketed continuous stirred tank reactor using different control structures. Journal of Process Control, 108, 112–124. https://doi.org/10.1016/j.jprocont.2021.11.005 DOI: https://doi.org/10.1016/j.jprocont.2021.11.005

- [4]. Sindhuja, P. P., Panda, A., Velappan, V. y Panda, R. C. (2023). Disturbance-observer-based finite time sliding mode controller with unmatched uncertainties utilizing improved cubature Kalman filter. Transactions of the Institute of Measurement and Control, 45(9), 1795–1812. https://doi.org/10.1177/01423312221140507 DOI: https://doi.org/10.1177/01423312221140507

- [5]. Abougarair, A. J. y Shashoa, N. A. A. (2021). Model Reference Adaptive Control for Temperature Regulation of Continuous Stirred Tank Reactor. Proceedings of the IEEE 2nd International Conference on Signal, Control and Communication (SCC), 276–281. https://doi.org/10.1109/scc53769.2021.9768396 DOI: https://doi.org/10.1109/SCC53769.2021.9768396

- [6]. Czyżniewski, M. y Łangowski, R. (2022). A robust sliding mode observer for non-linear uncertain biochemical systems. ISA Transactions, 123, 25–45. https://doi.org/10.1016/j.isatra.2021.05.040 DOI: https://doi.org/10.1016/j.isatra.2021.05.040

- [7]. Vásquez, M., Yanascual, J., Herrera, M., Prado, A. y Camacho, O. (2023). A hybrid sliding mode control based on a nonlinear PID surface for nonlinear chemical processes. Engineering Science and Technology, an International Journal, 40, 101361. https://doi.org/10.1016/j.jestch.2023.101361 DOI: https://doi.org/10.1016/j.jestch.2023.101361

- [8]. LAEPT Laboratory (2020). Robust Tracking Control for the Non-isothermal Continuous Stirred Tank Reactor. International Journal Bioautomation, 24(2), 115–123. https://doi.org/10.7546/ijba.2020.24.2.000615 DOI: https://doi.org/10.7546/ijba.2020.24.2.000615

- [9]. Petre, E., Selişteanu, D. y Roman, M. (2021). Advanced nonlinear control strategies for a fermentation bioreactor used for ethanol production. Bioresource Technology, 328, 124836. https://doi.org/10.1016/j.biortech.2021.124836 DOI: https://doi.org/10.1016/j.biortech.2021.124836

- [10]. Obando, C., Rojas, R., Ulloa, F. y Camacho, O. (2023). Dual-Mode Based Sliding Mode Control Approach for Nonlinear Chemical Processes. ACS Omega, 8(10), 9511–9525. https://doi.org/10.1021/acsomega.2c08201 DOI: https://doi.org/10.1021/acsomega.2c08201

- [11]. Hollweg, G. V., Evald, P. J. D. O., Milbradt, D. M. C., Tambara, R. V. y Gründling, H. A. (2021). Lyapunov stability analysis of discrete-time robust adaptive super-twisting sliding mode controller. International Journal of Control, 96(3), 614–627. https://doi.org/10.1080/00207179.2021.2008508 DOI: https://doi.org/10.1080/00207179.2021.2008508

- [12]. Zhou, W., Wang, Y. y Liang, Y. (2022). Sliding mode control for networked control systems: A brief survey. ISA Transactions, 124, 249–259. https://doi.org/10.1016/j.isatra.2020.12.049 DOI: https://doi.org/10.1016/j.isatra.2020.12.049

- [13]. Hollweg, G. V., Evald, P. J. D. O., Milbradt, D. M. C., Tambara, R. V. y Gründling, H. A. (2022). Design of continuous-time model reference adaptive and super-twisting sliding mode controller. Mathematics and Computers in Simulation, 201, 215–238. https://doi.org/10.1016/j.matcom.2022.05.014 DOI: https://doi.org/10.1016/j.matcom.2022.05.014

- [14]. Lascu, C., Argeseanu, A. y Blaabjerg, F. (2020). Supertwisting Sliding-Mode Direct Torque and Flux Control of Induction Machine Drives. IEEE Transactions on Power Electronics, 35(5), 5057–5065. https://doi.org/10.1109/TPEL.2019.2944124 DOI: https://doi.org/10.1109/TPEL.2019.2944124

- [15]. Gurumurthy, G. y Das, D. K. (2021). Terminal sliding mode disturbance observer based adaptive super twisting sliding mode controller design for a class of nonlinear systems. European Journal of Control, 57, 232–241. https://doi.org/10.1016/j.ejcon.2020.05.004 DOI: https://doi.org/10.1016/j.ejcon.2020.05.004

- [16]. Ahmed, S., Muhammad Adil, H. M., Ahmad, I., Azeem, M. K., e Huma, Z. y Abbas Khan, S. (2020). Supertwisting Sliding Mode Algorithm Based Nonlinear MPPT Control for a Solar PV System with Artificial Neural Networks Based Reference Generation. Energies, 13(14), 3695. https://doi.org/10.3390/en13143695 DOI: https://doi.org/10.3390/en13143695

- [17]. Charfeddine, S., Boudjemline, A., Ben Aoun, S., Jerbi, H., Kchaou, M., Alshammari, O., Elleuch, Z. y Abbassi, R. (2021). Design of a Fuzzy Optimization Control Structure for Nonlinear Systems: A Disturbance-Rejection Method. Applied Sciences, 11(6), 2612. https://doi.org/10.3390/app11062612 DOI: https://doi.org/10.3390/app11062612

- [18]. Xin, L.-P., Yu, B., Zhao, L. y Yu, J. (2020). Adaptive fuzzy backstepping control for a two continuous stirred tank reactors process based on dynamic surface control approach. Applied Mathematics and Computation, 377, 125138. https://doi.org/10.1016/j.amc.2020.125138 DOI: https://doi.org/10.1016/j.amc.2020.125138

- [19]. Herrera, M., Camacho, O., Leiva, H. y Smith, C. (2020). An approach of dynamic sliding mode control for chemical processes. Journal of Process Control, 85, 112–120. https://doi.org/10.1016/j.jprocont.2019.11.008 DOI: https://doi.org/10.1016/j.jprocont.2019.11.008

- [20]. González, J. A. C., Salas-Peña, O. y De León-Morales, J. (2021). Observer-based super twisting design: A comparative study on quadrotor altitude control. ISA Transactions, 109, 307–314. https://doi.org/10.1016/j.isatra.2020.10.026 DOI: https://doi.org/10.1016/j.isatra.2020.10.026

Published

2025-12-19

How to Cite

Rodríguez Mata, A. E., Perez Lopez, P. A., Gonzalez Huit, V. A., Lozoya Ponce, R. E., Soto Soto, R., & Jiménez López, E. (2025). Control por Modo Deslizante Super-Twisting en Reactores Continuos de Tanque Agitado. Quimica Hoy, 14(02), 16–26. https://doi.org/10.29105/qh14.02-483