Cation Xanthated Exchangers from Colombian Sub-Bituminous Coals Effectively Removed Cadmium and Lead from Aqueous Solutions
DOI:
https://doi.org/10.29105/qh2.1-89Palabras clave:
subbituminous coal, cation exchange, exchangers xanthatesResumen
In Colombia, low rank coals are almost totally used for power and metallurgical aims, which are activities that produce contamination. In this investigation, as an altemative to the traditional use of low rank coals, we prepared cationic xanthated exchangers from a subbituminous coal (67.6% C, 4.6% H, 22.4% O, 0.6% S, 3.2% ashes and 46.2% volatile matter) of Montelibano-Córdoba; this exchanger showed better exchange capacities for cadmium and lead (1.8 meq/g) than traditional sulphonated exchangers (0.56 and 1.11 meq/g for cadmium and lead respectively). Xanthation was verified at 30 ºC and at 5-10 ºC with NaOH and CS2. Toe best performance of xanthation, determined by Infrared spectrometry and ion exchange experiments, occurred at low temperatures maybe due to CS2 volatility. By diminishing the particle size of coal the exchange capacity increased. The exchange capacity was evaluated by flame atomic absorption spectrometry.
Descargas
Citas
-[1] World Coal Association, http://www.worldcoal.org/coal/coalmining/. Accessed in October 22/2011.
-[2] R.A.K. Rao, M.A. Khan, F. Rehman, Adsorp. Sci. Technol. 29 (2011) 83. DOI: https://doi.org/10.1260/0263-6174.29.1.83
-[3] M. Halina, A. Danuta, Fuel 70 (1991)551. DOI: https://doi.org/10.1016/0016-2361(91)90035-9
-[4] K. Murakami, Fuel 43 (1994)95. DOI: https://doi.org/10.1016/0378-3820(95)00009-V
-[5] K. Murakami, T. Yamada, K. Fuda, T. Matsunaga, Y. Nishiyama, Fuel 76,(1997) 1085. DOI: https://doi.org/10.1016/S0016-2361(97)00126-9
-[6] J. Rivera, et al. Memorias del Congreso Nacional de Ciencias y Tecnología del Carbón. Paipa, Colombia, 1998.
-[7] C.L. Swanson, T.R. Naffziger, C.R. Russell, B.T. Hofreiter, C.E. Rist, Ind. Eng. Chem. Prod. Res. Dev. 3 (1964) 22. DOI: https://doi.org/10.1021/i360009a008
-[8] E. Marañón, H. Sastre, Biores. Technol. 40 ( 1992) 73. DOI: https://doi.org/10.1016/0960-8524(92)90122-E
-[9] E. Marañón, H. Sastre. React. Polym. 18(1992) 173. DOI: https://doi.org/10.1016/0923-1137(92)90256-2
-[10] J. Anwar, U. Shafique, M.Salman, Waheed-uz Zaman, S. Anwar, J.M. Anzano, J. Hazard Mater. 171 (2009) 797. DOI: https://doi.org/10.1016/j.jhazmat.2009.06.076
-[11] G. Arslan, E. Pehlivan, Bioresour Technol. 98 (2007) 2836. DOI: https://doi.org/10.1016/j.biortech.2006.09.041
-[12] C. Arpa, E. Basyilmaz, S. Bektas, ó. Gene, Y. Yürüm, Fuel Process. Technol. 68, (2000) 111. DOI: https://doi.org/10.1016/S0378-3820(00)00126-0
-[13] A.D. Stuart, Fuel 65 (1986) 1003. DOI: https://doi.org/10.1016/0016-2361(86)90212-7
-[14] H.N.S. Schafer, Fuel 49 (1970) 197. DOI: https://doi.org/10.1016/0016-2361(70)90040-2
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2011 Lewis Gómez-De-Arco, Liliana Alzate-Rodríguez, Fredy Colpas-Castillo , Roberto Fernández-Maestre
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.