Cation Xanthated Exchangers from Colombian Sub-Bituminous Coals Effectively Removed Cadmium and Lead from Aqueous Solutions
DOI:
https://doi.org/10.29105/qh2.1-89Keywords:
subbituminous coal, cation exchange, exchangers xanthatesAbstract
In Colombia, low rank coals are almost totally used for power and metallurgical aims, which are activities that produce contamination. In this investigation, as an altemative to the traditional use of low rank coals, we prepared cationic xanthated exchangers from a subbituminous coal (67.6% C, 4.6% H, 22.4% O, 0.6% S, 3.2% ashes and 46.2% volatile matter) of Montelibano-Córdoba; this exchanger showed better exchange capacities for cadmium and lead (1.8 meq/g) than traditional sulphonated exchangers (0.56 and 1.11 meq/g for cadmium and lead respectively). Xanthation was verified at 30 ºC and at 5-10 ºC with NaOH and CS2. Toe best performance of xanthation, determined by Infrared spectrometry and ion exchange experiments, occurred at low temperatures maybe due to CS2 volatility. By diminishing the particle size of coal the exchange capacity increased. The exchange capacity was evaluated by flame atomic absorption spectrometry.
Downloads
References
-[1] World Coal Association, http://www.worldcoal.org/coal/coalmining/. Accessed in October 22/2011.
-[2] R.A.K. Rao, M.A. Khan, F. Rehman, Adsorp. Sci. Technol. 29 (2011) 83. DOI: https://doi.org/10.1260/0263-6174.29.1.83
-[3] M. Halina, A. Danuta, Fuel 70 (1991)551. DOI: https://doi.org/10.1016/0016-2361(91)90035-9
-[4] K. Murakami, Fuel 43 (1994)95. DOI: https://doi.org/10.1016/0378-3820(95)00009-V
-[5] K. Murakami, T. Yamada, K. Fuda, T. Matsunaga, Y. Nishiyama, Fuel 76,(1997) 1085. DOI: https://doi.org/10.1016/S0016-2361(97)00126-9
-[6] J. Rivera, et al. Memorias del Congreso Nacional de Ciencias y Tecnología del Carbón. Paipa, Colombia, 1998.
-[7] C.L. Swanson, T.R. Naffziger, C.R. Russell, B.T. Hofreiter, C.E. Rist, Ind. Eng. Chem. Prod. Res. Dev. 3 (1964) 22. DOI: https://doi.org/10.1021/i360009a008
-[8] E. Marañón, H. Sastre, Biores. Technol. 40 ( 1992) 73. DOI: https://doi.org/10.1016/0960-8524(92)90122-E
-[9] E. Marañón, H. Sastre. React. Polym. 18(1992) 173. DOI: https://doi.org/10.1016/0923-1137(92)90256-2
-[10] J. Anwar, U. Shafique, M.Salman, Waheed-uz Zaman, S. Anwar, J.M. Anzano, J. Hazard Mater. 171 (2009) 797. DOI: https://doi.org/10.1016/j.jhazmat.2009.06.076
-[11] G. Arslan, E. Pehlivan, Bioresour Technol. 98 (2007) 2836. DOI: https://doi.org/10.1016/j.biortech.2006.09.041
-[12] C. Arpa, E. Basyilmaz, S. Bektas, ó. Gene, Y. Yürüm, Fuel Process. Technol. 68, (2000) 111. DOI: https://doi.org/10.1016/S0378-3820(00)00126-0
-[13] A.D. Stuart, Fuel 65 (1986) 1003. DOI: https://doi.org/10.1016/0016-2361(86)90212-7
-[14] H.N.S. Schafer, Fuel 49 (1970) 197. DOI: https://doi.org/10.1016/0016-2361(70)90040-2
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2011 Lewis Gómez-De-Arco, Liliana Alzate-Rodríguez, Fredy Colpas-Castillo , Roberto Fernández-Maestre
This work is licensed under a Creative Commons Attribution 4.0 International License.