Estructuración de armazones organometálicos en monolitos para aplicaciones medioambientales

Authors

  • Alan A. Rico-Barragán Universidad Autónoma de Nuevo León
  • Emmanuel Bretón-Jiménez Universidad Autónoma de Nuevo León
  • Eduardo Soto-Regalado Universidad Autónoma de Nuevo León
  • Margarita Loredo Cancino Universidad Autónoma de Nuevo León
  • Nancy Davila-Guzman Universidad Autónoma de Nuevo León

DOI:

https://doi.org/10.29105/qh11.02-286

Keywords:

Metal-organic frameworks, structuring; monoliths, 3D-printing, MOF

Abstract

Metal-organic frameworks (MOF) -powder crystalline materials with high surface areas and porosities- have found
tremendous applications in storage, separation, purification, energy, catalysis, and drug delivery. Several techniques have
been employed to obtained structured MOF to reduce high-pressures drops, fouling and obstruction, when used in packed
beds. Extrusion is the technique most used to obtain monolithic structures while the three-dimensional printing technique
has emerged recently to obtain MOF monolith with desired and tailor-made properties. This work is a compilation of the
most recent studies on the structuring of MOFSs in monoliths and their uses for the removal of air and water pollutants.

Downloads

Download data is not yet available.

References

-[1] Giannakoudakis, D. A.; Hosseini-Bandegharaei, A.; Tsafrakidou, P.; Triantafyllidis, K. S.; Kornaros, M.; Anastopoulos, I. J. Environ. Manage. 2018, 227, 354-364. DOI: https://doi.org/10.1016/j.jenvman.2018.08.064

-[2] Pioquinto-García, S.; Tiempos-Flores, N.; Rico-Barragan, A. A.; Dávila-Guzmán, N. E. Mater. Today Proc. 2021, 46,31273130. DOI: https://doi.org/10.1016/j.matpr.2021.02.693

-[3] Kiisgens, P.; Zgaverdea, A.; Fritz, H. G.; Siegle, S.; Kaskel, S. J. Am. Ceram. Soc. 2010, 93 (9), 2476-2479. DOI: https://doi.org/10.1111/j.1551-2916.2010.03824.x

-[4] Vikrant, K.; Kim, K. H.; Kumar, V.; Giannakoudakis, D. A.; Boukhvalov, D. W. A. Chem. Eng. J. 2020, 397, 125391. DOI: https://doi.org/10.1016/j.cej.2020.125391

-[5] Farha, O. K.; Eryazici, 1; Jeong, N. C.; Hauser, B. G.; Wilmer, C. E.; Sarjeant, A. A.; Snurr, R. Q.; Nguyen, S. T.; Yazaydin, A. Ó.; Hupp, J. T. J. 4m. Chem. Soc. 2012, 134 (36),15016-15021. DOI: https://doi.org/10.1021/ja3055639

-[6] Yang, J.; Bai, H.; Zhang, F.; Liu, J.; Winarta, J.; Wang, Y.; Mu, B. J. Chem. Eng. Data. 2019, 64 (12), 5814-5823. DOI: https://doi.org/10.1021/acs.jced.9b00770

-[7] Akhtar, F.; Andersson, L.; Ogunwumi, S.; Hedin, N.; Bergstróm, L. J. Eur. Ceram. Soc. 2014, 34 (7), 1643-1666. DOI: https://doi.org/10.1016/j.jeurceramsoc.2014.01.008

-[8] Middelkoop, V.; Coenen, K.; Schalck, J.; Van Sint Annaland, M.; Gallucci, F. Chem. Eng. J. 2019, 357, 309— 319. DOI: https://doi.org/10.1016/j.cej.2018.09.130

-[9] Valizadeh, B.; Nguyen, T. N.; Stylianou, K. C. Polyhedron 2018, 145, 1-15. DOI: https://doi.org/10.1016/j.poly.2018.01.004

-[10] Liu, X. M.; Xie, L. H.; Wu, Y. /norganic Chemistry Frontiers. 2020, 2840-2866. DOI: https://doi.org/10.1039/C9QI01564G

-[11] Hong, W. Y.; Perera, S. P.; Burrows, A. D. Microporous Mesoporous Mater. 2015, 214, 149-155. DOI: https://doi.org/10.1016/j.micromeso.2015.05.014

-[12] Hong, W. Y.; Perera, S. P.; Burrows, A. D. Microporous Mesoporous Mater. 2020, 308, 110525. DOI: https://doi.org/10.1016/j.micromeso.2020.110525

-13] Hastiirk, E.; Schlisener, C.; Quodbach, J.; Schmitz, A.;Janiak, C. Microporous Mesoporous Mater. 2019, 280,277-287. DOI: https://doi.org/10.1016/j.micromeso.2019.02.011

-14] Lawson, S.; Hajari, A.; Rownaghi, A. A.; Rezaei, F. Sep. Purif. Technol. 2017, 183, 173-180. DOI: https://doi.org/10.1016/j.seppur.2017.03.072

-[15] Zacharia, R.; Cossement, D.; Lafi, L.; Chahine, R. J. Mater. Chem. 2010, 20 (11), 2145-2151. DOI: https://doi.org/10.1039/b922991d

-[16] Vilela, S. M. F.; Salcedo-Abraira, P.; Micheron, L.; SollaE. L.; Yot, P. G.; Horcajada, P. Chem. Commun. 2018, 54 (93), 1308813091. DOI: https://doi.org/10.1039/C8CC07252C

-[17] Fu, Q.; Zhang, L.; Zhang, H.; Chen, X.; Li, M.; Gong, M. Environ. Res. 2020, 156, 109608. DOI: https://doi.org/10.1016/j.envres.2020.109608

-[18] Fu, Q.; Wen, L.; Zhang, L.; Chen, X.; Pun, D.; Ahmed, A.;Yang, Y.; Zhang, H. ACS Appl. Mater. Interfaces. 2017, 9 (39), 3397933988. DOI: https://doi.org/10.1021/acsami.7b10872

-[19] Ramos-Fernandez, E. V.; Garcia-Domingos, M.; JuanAlcañiz, J.; Gascon, J.; Kapteijn, F. Appl. Catal. A Gen. 2011, 391 (12), 261-267. DOI: https://doi.org/10.1016/j.apcata.2010.05.019

-[20] Tagliabue, M.; Rizzo, C.; Millini, R.; Dietzel, P. D. C.; Blom, R.; Zanardi, S. J. Porous Mater. 2011, 18 (3), 289—296. DOI: https://doi.org/10.1007/s10934-010-9378-0

-[21] Pang, X.; Liu, H.; Yu, H.; Zhang, M.; Bai, L.; Yan, H. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019, 1125 (July), 121715. DOI: https://doi.org/10.1016/j.jchromb.2019.121715

-[22] Thakkar, H.; Eastman, S.; Al-Naddaf, Q.; Rownaghi, A. A.; Rezaei, F. ACS Appl. Mater. Interfaces 2017, 9 (41), 35908-35916. DOI: https://doi.org/10.1021/acsami.7b11626

-[23] Lefevere, J.; Claessens, B.; Mullens, S.; Baron, G.; CousinSaint-Remi, J.; Denayer, J. F. M. ACS Appl. Nano Mater. 2019, 2 (8), 4991-4999. DOI: https://doi.org/10.1021/acsanm.9b00934

-[24] Kreider, M. C.; Sefa, M.; Fedchak, J. A.; Scherschligt, J.; Bible, M.; Natarajan, B.; Klimov, N. N.; Miller, A. E.; Ahmed, Z.; Hartings, M. R. Polym. Adv. Technol. 2018, 29 (2), 867-873. DOI: https://doi.org/10.1002/pat.4197

-[25] Bible, M.; Sefa, M.; Fedchak, J. A.; Scherschligt, J.; Natarajan, B.; Ahmed, Z.; Hartings, M. R. 3D Print. Addit. Manuf. 2018, 5 (1), 63-72. DOI: https://doi.org/10.1089/3dp.2017.0067

-[26] Sultan, S.; Abdelhamid, H. N.; Zou, X.; Mathew, A. P. Adv. Funct. Mater. 2019, 29 (2), 1-12. DOI: https://doi.org/10.1002/adfm.201805372

-[27] Lim, G. J. H.; Wu, Y.; Shah, B. B.; Koh, J. J.; Liu, C. K.; Zhao, D.; Cheetham, A. K.; Wang, J.; Ding, J. ACS Mater. Lett. 2019, 1 (1), 147-153. DOI: https://doi.org/10.1021/acsmaterialslett.9b00069

-[28] Grande, C. A.; Blom, R.; Middelkoop, V.; Matras, D.; Vamvakeros, A.; Jacques, S. D. M.; Beale, A. M.; Di Michiel, M.; Anne Andreassen, K.; Bouzga, A. M. Chem. Eng. J. 2020, 402 (July), 126166. DOI: https://doi.org/10.1016/j.cej.2020.126166

-[29] Dhainaut, J.; Bonneau, M.; Ueoka, R.; Kanamori, K.; Furukawa, S. ACS Appl. Mater. Interfaces 2020, 12 (9), 10983-10992. DOI: https://doi.org/10.1021/acsami.9b22257

-[30] Claessens, B.; Dubois, N.; Lefevere, J.; Mullens, S.; Cousin-Saint-Remi, J.; Denayer, J. F. M. Ind. Eng. Chem. Res. 2020, 59 (18), 8813-8824. DOI: https://doi.org/10.1021/acs.iecr.0c00453

-[31] Verougstraete, B.; Schuddinck, D.; Lefevere, J.; Baron, G. V.; Denayer, J. F. M. A. Front. Chem. Eng. 2020, 2 (November), 1-8. DOI: https://doi.org/10.3389/fceng.2020.589686

-[32] Wang, Z.; Wang, J.; Li, M.; Sun, K.; Liu, C. J. Sci. Rep. 2014, 4, 4-10. DOI: https://doi.org/10.1038/srep05317

-[33] Halevi, O.; Tan, J. M. R.; Lee, P. S.; Magdassi, S. Ad». Sustain. Syst. 2018, 2 (2), 1700150. DOI: https://doi.org/10.1002/adsu.201700150

-[34] Pei, R.; Fan, L.; Zhao, F.; Xiao, J.; Yang, Y.; Lai, A.; Zhou, S. F.; Zhan, G. J. Hazard. Mater. 2020, 384, 121418. DOI: https://doi.org/10.1016/j.jhazmat.2019.121418

Published

2022-10-04

How to Cite

Rico-Barragán, A. A., Bretón-Jiménez, E., Soto-Regalado, E., Loredo Cancino, M., & Davila-Guzman, N. (2022). Estructuración de armazones organometálicos en monolitos para aplicaciones medioambientales . Quimica Hoy, 11(02), 1–7. https://doi.org/10.29105/qh11.02-286