Estructuración de armazones organometálicos en monolitos para aplicaciones medioambientales

Authors

  • Alan A. Rico-Barragán Universidad Autónoma de Nuevo León
  • Emmanuel Bretón-Jiménez Universidad Autónoma de Nuevo León
  • Eduardo Soto-Regalado Universidad Autónoma de Nuevo León
  • Margarita Loredo Cancino Universidad Autónoma de Nuevo León
  • Nancy Davila-Guzman Universidad Autónoma de Nuevo León

DOI:

https://doi.org/10.29105/qh11.02-286

Keywords:

Metal-organic frameworks, structuring; monoliths, 3D-printing, MOF

Abstract

Metal-organic frameworks (MOF) -powder crystalline materials with high surface areas and porosities- have found
tremendous applications in storage, separation, purification, energy, catalysis, and drug delivery. Several techniques have
been employed to obtained structured MOF to reduce high-pressures drops, fouling and obstruction, when used in packed
beds. Extrusion is the technique most used to obtain monolithic structures while the three-dimensional printing technique
has emerged recently to obtain MOF monolith with desired and tailor-made properties. This work is a compilation of the
most recent studies on the structuring of MOFSs in monoliths and their uses for the removal of air and water pollutants.

Downloads

References

-[1] Giannakoudakis, D. A.; Hosseini-Bandegharaei, A.; Tsafrakidou, P.; Triantafyllidis, K. S.; Kornaros, M.; Anastopoulos, I. J. Environ. Manage. 2018, 227, 354-364. DOI: https://doi.org/10.1016/j.jenvman.2018.08.064

-[2] Pioquinto-García, S.; Tiempos-Flores, N.; Rico-Barragan, A. A.; Dávila-Guzmán, N. E. Mater. Today Proc. 2021, 46,31273130. DOI: https://doi.org/10.1016/j.matpr.2021.02.693

-[3] Kiisgens, P.; Zgaverdea, A.; Fritz, H. G.; Siegle, S.; Kaskel, S. J. Am. Ceram. Soc. 2010, 93 (9), 2476-2479. DOI: https://doi.org/10.1111/j.1551-2916.2010.03824.x

-[4] Vikrant, K.; Kim, K. H.; Kumar, V.; Giannakoudakis, D. A.; Boukhvalov, D. W. A. Chem. Eng. J. 2020, 397, 125391. DOI: https://doi.org/10.1016/j.cej.2020.125391

-[5] Farha, O. K.; Eryazici, 1; Jeong, N. C.; Hauser, B. G.; Wilmer, C. E.; Sarjeant, A. A.; Snurr, R. Q.; Nguyen, S. T.; Yazaydin, A. Ó.; Hupp, J. T. J. 4m. Chem. Soc. 2012, 134 (36),15016-15021. DOI: https://doi.org/10.1021/ja3055639

-[6] Yang, J.; Bai, H.; Zhang, F.; Liu, J.; Winarta, J.; Wang, Y.; Mu, B. J. Chem. Eng. Data. 2019, 64 (12), 5814-5823. DOI: https://doi.org/10.1021/acs.jced.9b00770

-[7] Akhtar, F.; Andersson, L.; Ogunwumi, S.; Hedin, N.; Bergstróm, L. J. Eur. Ceram. Soc. 2014, 34 (7), 1643-1666. DOI: https://doi.org/10.1016/j.jeurceramsoc.2014.01.008

-[8] Middelkoop, V.; Coenen, K.; Schalck, J.; Van Sint Annaland, M.; Gallucci, F. Chem. Eng. J. 2019, 357, 309— 319. DOI: https://doi.org/10.1016/j.cej.2018.09.130

-[9] Valizadeh, B.; Nguyen, T. N.; Stylianou, K. C. Polyhedron 2018, 145, 1-15. DOI: https://doi.org/10.1016/j.poly.2018.01.004

-[10] Liu, X. M.; Xie, L. H.; Wu, Y. /norganic Chemistry Frontiers. 2020, 2840-2866. DOI: https://doi.org/10.1039/C9QI01564G

-[11] Hong, W. Y.; Perera, S. P.; Burrows, A. D. Microporous Mesoporous Mater. 2015, 214, 149-155. DOI: https://doi.org/10.1016/j.micromeso.2015.05.014

-[12] Hong, W. Y.; Perera, S. P.; Burrows, A. D. Microporous Mesoporous Mater. 2020, 308, 110525. DOI: https://doi.org/10.1016/j.micromeso.2020.110525

-13] Hastiirk, E.; Schlisener, C.; Quodbach, J.; Schmitz, A.;Janiak, C. Microporous Mesoporous Mater. 2019, 280,277-287. DOI: https://doi.org/10.1016/j.micromeso.2019.02.011

-14] Lawson, S.; Hajari, A.; Rownaghi, A. A.; Rezaei, F. Sep. Purif. Technol. 2017, 183, 173-180. DOI: https://doi.org/10.1016/j.seppur.2017.03.072

-[15] Zacharia, R.; Cossement, D.; Lafi, L.; Chahine, R. J. Mater. Chem. 2010, 20 (11), 2145-2151. DOI: https://doi.org/10.1039/b922991d

-[16] Vilela, S. M. F.; Salcedo-Abraira, P.; Micheron, L.; SollaE. L.; Yot, P. G.; Horcajada, P. Chem. Commun. 2018, 54 (93), 1308813091. DOI: https://doi.org/10.1039/C8CC07252C

-[17] Fu, Q.; Zhang, L.; Zhang, H.; Chen, X.; Li, M.; Gong, M. Environ. Res. 2020, 156, 109608. DOI: https://doi.org/10.1016/j.envres.2020.109608

-[18] Fu, Q.; Wen, L.; Zhang, L.; Chen, X.; Pun, D.; Ahmed, A.;Yang, Y.; Zhang, H. ACS Appl. Mater. Interfaces. 2017, 9 (39), 3397933988. DOI: https://doi.org/10.1021/acsami.7b10872

-[19] Ramos-Fernandez, E. V.; Garcia-Domingos, M.; JuanAlcañiz, J.; Gascon, J.; Kapteijn, F. Appl. Catal. A Gen. 2011, 391 (12), 261-267. DOI: https://doi.org/10.1016/j.apcata.2010.05.019

-[20] Tagliabue, M.; Rizzo, C.; Millini, R.; Dietzel, P. D. C.; Blom, R.; Zanardi, S. J. Porous Mater. 2011, 18 (3), 289—296. DOI: https://doi.org/10.1007/s10934-010-9378-0

-[21] Pang, X.; Liu, H.; Yu, H.; Zhang, M.; Bai, L.; Yan, H. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019, 1125 (July), 121715. DOI: https://doi.org/10.1016/j.jchromb.2019.121715

-[22] Thakkar, H.; Eastman, S.; Al-Naddaf, Q.; Rownaghi, A. A.; Rezaei, F. ACS Appl. Mater. Interfaces 2017, 9 (41), 35908-35916. DOI: https://doi.org/10.1021/acsami.7b11626

-[23] Lefevere, J.; Claessens, B.; Mullens, S.; Baron, G.; CousinSaint-Remi, J.; Denayer, J. F. M. ACS Appl. Nano Mater. 2019, 2 (8), 4991-4999. DOI: https://doi.org/10.1021/acsanm.9b00934

-[24] Kreider, M. C.; Sefa, M.; Fedchak, J. A.; Scherschligt, J.; Bible, M.; Natarajan, B.; Klimov, N. N.; Miller, A. E.; Ahmed, Z.; Hartings, M. R. Polym. Adv. Technol. 2018, 29 (2), 867-873. DOI: https://doi.org/10.1002/pat.4197

-[25] Bible, M.; Sefa, M.; Fedchak, J. A.; Scherschligt, J.; Natarajan, B.; Ahmed, Z.; Hartings, M. R. 3D Print. Addit. Manuf. 2018, 5 (1), 63-72. DOI: https://doi.org/10.1089/3dp.2017.0067

-[26] Sultan, S.; Abdelhamid, H. N.; Zou, X.; Mathew, A. P. Adv. Funct. Mater. 2019, 29 (2), 1-12. DOI: https://doi.org/10.1002/adfm.201805372

-[27] Lim, G. J. H.; Wu, Y.; Shah, B. B.; Koh, J. J.; Liu, C. K.; Zhao, D.; Cheetham, A. K.; Wang, J.; Ding, J. ACS Mater. Lett. 2019, 1 (1), 147-153. DOI: https://doi.org/10.1021/acsmaterialslett.9b00069

-[28] Grande, C. A.; Blom, R.; Middelkoop, V.; Matras, D.; Vamvakeros, A.; Jacques, S. D. M.; Beale, A. M.; Di Michiel, M.; Anne Andreassen, K.; Bouzga, A. M. Chem. Eng. J. 2020, 402 (July), 126166. DOI: https://doi.org/10.1016/j.cej.2020.126166

-[29] Dhainaut, J.; Bonneau, M.; Ueoka, R.; Kanamori, K.; Furukawa, S. ACS Appl. Mater. Interfaces 2020, 12 (9), 10983-10992. DOI: https://doi.org/10.1021/acsami.9b22257

-[30] Claessens, B.; Dubois, N.; Lefevere, J.; Mullens, S.; Cousin-Saint-Remi, J.; Denayer, J. F. M. Ind. Eng. Chem. Res. 2020, 59 (18), 8813-8824. DOI: https://doi.org/10.1021/acs.iecr.0c00453

-[31] Verougstraete, B.; Schuddinck, D.; Lefevere, J.; Baron, G. V.; Denayer, J. F. M. A. Front. Chem. Eng. 2020, 2 (November), 1-8. DOI: https://doi.org/10.3389/fceng.2020.589686

-[32] Wang, Z.; Wang, J.; Li, M.; Sun, K.; Liu, C. J. Sci. Rep. 2014, 4, 4-10. DOI: https://doi.org/10.1038/srep05317

-[33] Halevi, O.; Tan, J. M. R.; Lee, P. S.; Magdassi, S. Ad». Sustain. Syst. 2018, 2 (2), 1700150. DOI: https://doi.org/10.1002/adsu.201700150

-[34] Pei, R.; Fan, L.; Zhao, F.; Xiao, J.; Yang, Y.; Lai, A.; Zhou, S. F.; Zhan, G. J. Hazard. Mater. 2020, 384, 121418. DOI: https://doi.org/10.1016/j.jhazmat.2019.121418

Published

2022-10-04

How to Cite

Rico-Barragán, A. A., Bretón-Jiménez, E., Soto-Regalado, E., Loredo Cancino, M., & Davila-Guzman, N. (2022). Estructuración de armazones organometálicos en monolitos para aplicaciones medioambientales . Quimica Hoy, 11(02), 1–7. https://doi.org/10.29105/qh11.02-286