Síntesis de whiskers de SiC asistida por microondas
DOI:
https://doi.org/10.29105/qh2.1-90Keywords:
whiskers, microondas, sol gelAbstract
Se desarrolló un nuevo proceso para la síntesis de whiskers de SiC asistida por microondas, basada en la mezcla de xerogeles de sílice y grafito en polvo. Como fuente de energía se emplearon microondas de 2.45 GHz y 1.5 kW de potencia, la síntesis se llevó a cabo en un horno de microondas casero sin modificar. Por otra parte, la sílice mesoporosa se sintetizó vía sol-gel, los precursores usados para esta síntesis fueron TEOS/H2O y etanol. Mediante difracción de rayos-x método de polvos se demostró que la sílice sintetizada es amorfa y que los polvos obtenidos en el microondas corresponden a -SiC. La técnica BET en un ciclo de adsorción desorción de N2 proporcionó un valor de tamaño de poro de 3.0 nm y un área superficial de 1090 m2/g. Para determinar la morfología de los whiskers de SiC se analizó por MEB en el modo de electrones secundarios. El efecto de las microondas utilizadas se discute en la sección de síntesis en el presente trabajo.
Downloads
References
-[1] Hofmann, M.; Zywietz, A.; Karch, K.; Bechstedt, F. Lattice dynamics of SiC polytypes within the bond -charge model. Physical Review B: Condensed Matter, 50(18), 13401-11, (1994). DOI: https://doi.org/10.1103/PhysRevB.50.13401
-[2] Li, Dezhi; Soar, Rupert C. Characterization of Process for Embedding SiC Fibers in Al 6061 O Matrix Through Ultrasonic Consolidation. Joumal of Engineering Materials and Technology, 131( 2), 021O 16/1-021O 16/6, (2009). DOI: https://doi.org/10.1115/1.3030946
-[3] Fu, Yuechun; Shi, Nanlin; Zhang, Dezhi; Yang, Rui. Microstructural changes of Ti-6Al-4V matrix by the incorporation of continuous SiC fibers. Joumal of Materials Science & Technology (Shenyang, China), 22(4), 452-454, (2006).
-[4] Bayer, Erwin; Hoeschele, Joerg; Kopperger, Bertram; Steinwandel, Juergen. Process and device for coating silicon carbide fibers with a Ti-based alloy by plasma spraying. U.S. Pat.Appl. Pub!., 4 pp, (2003).
-[5] Aksenov,A. A.; Egorushkina, Z. F.; Medvedeva, S. V. Structure of coreless, long silicon carbide fibres and aluminum-SiC composites. Fibre Chemistry (Translation of Khimicheskie Volokna), 33(3), 163-171, (2001) . DOI: https://doi.org/10.1023/A:1012358132459
-[6] Medvedeva, S. V.;A ksenov, A. A.; Egorushkina, Z. E. Study of interaction at interfaces in composites based on AI-Zn and AlZn-Mg-Cu system alloys strengthened by long coreless silicon carbide fibers. Izvestiya Vysshikh Uchebnykh Zavedenii, Tsvetnaya Metallurgiya, (3), 69-73, (2000).
-[7] Suchet, Jacques; Bailly, Francis. Chemical bonding in mineral crystals. Ann. Chim. (París), 10(11-12), 517-32, (1965).
-[8] Kushwaha, M. S. Toe bond -bending force model (BBFM) for phonons in~ - silicon carbide. Physica Status Solidi B: Basic Research, 111(1), 337-40, (1982). DOI: https://doi.org/10.1002/pssb.2221110138
-[9] Cheung R, Silicon Carbide Microelectromechanical Systems for Harsh Environments, Imperial College Press, 7-23, (2006). DOI: https://doi.org/10.1142/p426
-[10] Acheson, Edward Goodrich. Method of manufacturing graphite articles. U.S., US 617979, (1899).
-[11] Giamrnanco, Rosario P. Process of growing silicon carbide p-n junction electroluminescing diodes using a modified traveling solvent method (National Research Corp.) U.S., 2 pp. us 3396059,(1968).
-[12] Novoselov K S, Gueim A K, Electric ?eld effect in atomically thin carbon ?lms, Science 306,, 666-669, (2004). DOI: https://doi.org/10.1126/science.1102896
-[13] Adda-Bedia, M.; Arias, R.; Ben Amar, M.; Lund, F. Generalized Griffith criterion for dynamic fracture and the stability of crack motion at high velocities. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 60(2-B), 2366-2376, (1999). DOI: https://doi.org/10.1103/PhysRevE.60.2366
-[14] Hasselman, D. P. H. Griffith criterion and thermal shock resistance of single-phase versus multiphase brittle ceramics. Journal of the American Ceramic Society, 52(4 ), 288-9, ( 1969). DOI: https://doi.org/10.1111/j.1151-2916.1969.tb09188.x
-[15] Gorodtsov, V. A.; Gotlib, V.A .; Lisovenko, D. S.; Salganik, R. L. Specific features of the strength of carbon whiskers. Technical Physics Letters, 32(10), 837-839, (2006). DOI: https://doi.org/10.1134/S1063785006100051
-[16] Li X K, Liu L, Zhang Y X, Shen Sh D, Ge Sh, Ling L Ch, Synthesis of nanometer silicon carbide whiskers from binary carbonaceous silica aerogels, Carbon 39, 159-165, (2001 ). DOI: https://doi.org/10.1016/S0008-6223(00)00020-8
-[17] Vyshnyakova, Kateryna; Yushin, Gleb; Pereselentseva, Ludmila; Gogotsi, Yury. Formation of porous SiC ceramics by pyrolysis of wood impregnated with silica. Intemational Journal of Applied Ceramic Technology, 3(6 ), 485-490, (2006). DOI: https://doi.org/10.1111/j.1744-7402.2006.02103.x
-[18] Kim, W.-J.; Kang, S.M.; Park, J. Y.; Ryu, W.-S. Effect of a SiC whisker formation on the densification of Tyranno SA/ SiC composites fabricated by the CVI process. Fusion Engineering and Design, 81(8-14), 931-936, (2006). DOI: https://doi.org/10.1016/j.fusengdes.2005.07.013
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2011 F. J. Garza-Méndez, A. J. Vanegas-Colín, M. D. Martínez-Quiroz, D. D. Reyna-Chávez
This work is licensed under a Creative Commons Attribution 4.0 International License.