Efecto de la concentración de nanoestructuras de ZnO sobre las propiedades optoelectrónicas del material ZnO - politiofeno
DOI:
https://doi.org/10.29105/qh3.2-95Keywords:
ZnO, nanoestructuras, microondas, material híbrido, politiofenoAbstract
Los resultados permitieron confirmar la síntesis vía microondas de nanoestructuras de ZnO, conformadas de nanopartículas con dimensiones menores a 60 nm. Las nanoestructuras obtenidas presentaron una morfología de esferoidal a irregular, mostrando la presencia de gran porosidad. Se logró sintetizar politiofeno con características conductoras mediante un sistema binario de solventes orgánicos. La modificación de la concentración de ZnO en las películas híbridas presentó un efecto considerable en la luminiscencia y en los espectros UV-Vis, lo cual nos indica una sinergia entre los materiales y un potencial uso en celdas solares híbridas.
Downloads
References
-[1] J. Y. Lek, L. Xi, B. E. Kardynal, L. H. Wong, Y. M. Lam. Understanding the Effect of Surface Chemistry on Charge Generation and Transport in Poly (3hexylthiophene)/CdSe Hybrid Solar Cells. Applied Materials & Interfaces. 3, (2011), 287 - 292. DOI: https://doi.org/10.1021/am100938f
-[2] S. Wu, Q. Tai, F. Yan. Hybrid Photovoltaic Devices Based on Poly (3-hexylthiophene) and Ordered Electrospun ZnO Nanofibers. Journal of Physical Chemistry C. 114, (2010), 6197-6200. DOI: https://doi.org/10.1021/jp910921a
-[3] J. Luo, C. Liu, S. Yang, Y. Cao. Hybrid Solar Cells Based on Blends of Poly (3-hexylthiophene) and Surface DyeModified, Ultrathin Linear- and Branched-TiO2 Nanorods. Solar Energy Materials & Solar Cells. 94, (2010), 501 508. DOI: https://doi.org/10.1016/j.solmat.2009.11.013
-[4] S. Yodyingyong, X. Zhou, Q. Zhang, D. Triampo, J. Xi, K. Park, B. Limketkai, G. Cao. Enhanced Photovoltaic Performance of Nanostructured Hybrid Solar Cell Using Highly Oriented TiO2 Nanotubes. Journal of Physical Chemistry C. 114, (2010), 21851 - 21855. DOI: https://doi.org/10.1021/jp1077888
-[5] M. Schierhorn, S. W. Boettcher, J. H. Peet, E. Matioli, G. C. Bazan, G. D. Stucky, M. Moskovits. CdSe Nanorods Domínate Photocurrent of Hybrid CdSe - P3HT Photovoltaic Cell. ACS Nano. 4, (2010), 6132 - 6136. DOI: https://doi.org/10.1021/nn101742c
-[6] C. Klingshirn, J. Fallert, H. Zhou, J. Sartor, C. Thiele, F. Maier-Flaig, D. Schneider, H. Kalt. 65 Years of ZnO Research - Old and very Recent Results. Physica Status Solidi B. 247, (2010), 1424 - 1447. DOI: https://doi.org/10.1002/pssb.200983195
-[7] L. Li, T. Zhai, Y. Bando, D. Golberg. Recent Progress of One-Dimensional ZnO Nanostructured Solar Cells. Nano Energy. 1, (2012), 91 - 106. DOI: https://doi.org/10.1016/j.nanoen.2011.10.005
-[8] A. Wadeasa, S. L. Beegum, S. Raja, O. Nur, M. Willander. The Demonstration of Hybrid n-ZnO Nanorod/p-Polymer Heterojunction Light Emitting Diodes on Glass Substrates. Applied Physics A: Materials Science & Processing. 95, (2009), 807 - 812. DOI: https://doi.org/10.1007/s00339-009-5075-8
-[9] J. Katayama, K. Ito, M. Matsuoka, J. Tamaki. Performance of Cu2O/ZnO Solar Cell Prepared by TwoStep Electrodeposition. Journal of Applied Electrochemistry. 34, (2004), 687 - 692. DOI: https://doi.org/10.1023/B:JACH.0000031166.73660.c1
-[10] J. Becker, K. R. Raghupathi, J. St. Pierre, D. Zhao, R. T. Koodali. Tuning of the Crystallite and Particle Sizes of ZnO Nanocrystalline Materials in Solvothermal Synthesis and Their Photocatalytic Activity for Dye Degradation. Journal of Physical Chemistry C. 115, (2011), 13844 13850. DOI: https://doi.org/10.1021/jp2038653
-[11] J. Zhou, P. Fei, Y. Gu, W. Mai, Y. Gao, R. Yang, G. Bao, Z. L. Wang. Piezoelectric -Potential-Controlled Polarity-Reversible Schottky Diodes and Switches of ZnO Wires. Nano Letters. 8, (2008), 3973 - 3977. DOI: https://doi.org/10.1021/nl802497e
-[12] Z. Shao, W. Zhu, Z. Li, Q. Yang, G. Wang. One - Step Fabrication of CdS Nanoparticle - Sensitized TiO2 Nanotube Arrays ViaElectrodeposition. Journal of PhysicalChemistry C. 116, (2012), 2438 - 2442. DOI: https://doi.org/10.1021/jp2078117
-[13] J. D. Mackenzie, E. P. Bescher. Chemical Routes in the Synthesis of Nanomaterials Using the Sol-Gel Process. Accounts of ChemicalResearch. 40, (2007), 810 - 818. DOI: https://doi.org/10.1021/ar7000149
-[14] S. K. N. Ayudhya, P. Tonto, O. Mekasuwandurnrong, V. Pavarajarn, P. Praserthdam. Solvothermal Synthesis of ZnO with Various Aspect Ratios Using Organic Solvents. CrystalGrowth&Design. 6, (2006), 2446 - 2450. DOI: https://doi.org/10.1021/cg050345z
-[15] C. L. Kuo, T. J. Kuo, M. H. Huang. Hydrothermal Synthesis of ZnO Microspheres and Hexagonal Microrods with Sheetlike and Platelike Nanostructures. Journal of Physical Chemistry B. 109, (2005), 20115 - 20121. DOI: https://doi.org/10.1021/jp0528919
-[16] S. Cho, S. H. Jung, K. H. Lee. Morphology-Controlled Growth of ZnO Nanostructures Using Microwave lrradiation: from Basic to Complex Structures. Journal of Physical Chemistry C. 112, (2008), 12769 - 12776. DOI: https://doi.org/10.1021/jp803783s
-[17] S. Das, A K. Mukhopadhyay, S. Datta, D. Basu. Prospects of Microwave Processing: An Overview. Bulletin of Material Science. 32, (2009), 1 - 13. DOI: https://doi.org/10.1007/s12034-009-0001-4
-[18] P. Zhu, J. Zhang, Z. Wu, Z. Zhang. Microwave-Assisted Synthesis of Various ZnO Hierarchical Nanostructures: Effects of Heating Parameters of Microwave Oven. CrystalGrowth&Design. 8, (2008), 3148 - 3153. DOI: https://doi.org/10.1021/cg0704504
-[19] A Vázquez, I. A López, l. Gómez, J. A Aguilar. Síntesis de Nanopartículas de ZnS Vía Microondas. Ingenierías. 11, (2008), 60 - 63.
-[20] Z. Hu, D. J. Escamilla, B. E. Heredia, G. Oskam, P. C. Searson. Synthesis of ZnO Nanoparticles in 2-Propanol by Reaction with Water. Journal of Physical Chemistry B. 109, (2005), 11209 • 11214. DOI: https://doi.org/10.1021/jp0506033
-[21] S. S. Jeon, S. J. Yang, K. J. Lee, S. S. Im. A Facile and Rapid Synthesis of UnsubstitutedPolythiophene with High Electrical Conductivity Using Binary Organic Solvents. Polymer. 51, (2010), 4069 • 4076. DOI: https://doi.org/10.1016/j.polymer.2010.07.013
-[22] R. Savu, R. Parra, E. Joanni, B. Jan -ar, S. A. Eliziário, R. de Camargo, P. R. Bueno, J. A. Varela, E. Longo, M. A Zaghete. The Effect of Cooling Rate During Hydrothermal Synthesis of ZnO Nanorods. Journal of Crystal Growth. 311, (2009), 4102 - 4108. DOI: https://doi.org/10.1016/j.jcrysgro.2009.06.039
-[23] S. Li, S. Meierott, J. M. Kohler. Effect of Water Content on Growth and Optical Properties of ZnO Nanoparticles Generated in Binary Solvent Mixtures by MicroContinuous Flow Synthesis. Chemical Engineering Journal. I 65, (2010), 958 • 965. DOI: https://doi.org/10.1016/j.cej.2010.08.033
-[24] X. G. Li, J. Li, M. R. Huang. Facile Optimal Synthesis of Inherently Electroconductive Polythiophene Nanoparticles. Chemistry, A European Journal. 15, (2009), 6446 - 6455. DOI: https://doi.org/10.1002/chem.200900181
-[25] X. G. Li, J. Li, Q. K. Meng, M. R. Huang. Interfacial Synthesis and Widely Controllable Conductivity of Polythiophene Microparticles. Journal of Physical Chemistry B. 113, (2009), 9718 - 9727. DOI: https://doi.org/10.1021/jp901395u
-[26] Z. Wang, Y. Wang, D. Xu, E. S. Kong, Y. Zhang. Facile Synthesis of Dispersible Spherical Polythiophene Nanoparticles by Copper(II) Catalyzed Oxidative Polymerization in Aqueous Medium. Synthetic Metals. 160, (2010), 921 - 926. DOI: https://doi.org/10.1016/j.synthmet.2010.02.001
-[27] S. H. Xu, S. Y. Li, Y. X. Wei, L. Zhang, F. Xu. Improving the Photocatalytic Performance of Conducting Polymer Polythiophene Sensitized TiO2 Nanoparticlesunder Sunlight lrradiation. Reaction Kinetics, Mechanisms and Catalysis. 101,(2010), 237 - 249. DOI: https://doi.org/10.1007/s11144-010-0222-y
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2013 Félix Aviña, Israel López , Idalia Gómez
This work is licensed under a Creative Commons Attribution 4.0 International License.