Modelación de un tratamiento avanzado de aguas residuales, provenientes de una planta de envasado, usando las metodologías de análisis de superficie de respuesta (ASR) y de redes neuronales (RNA)
DOI:
https://doi.org/10.29105/qh3.2-97Keywords:
Coagulación, floculación, ósmosis inversa (OI), análisis de superficie de respuesta (ASR) y redes neuronales artificiales (RNA)Abstract
El agua residual estudiada fue obtenida de una planta productora de latas, localizada en el centro de la República Mexicana. Esta agua residual fue caracterizada y tratada a nivel laboratorio y planta piloto usando procesos de coagulación y floculación. Tres coagulantes y dos floculantes fueron usados en seis combinaciones y un diseño factorial, así como un análisis de superficie de respuesta (ASR) fueron llevados a cabo para explorar los efectos de pH, concentraciones de coagulante y floculante y velocidad de agitación. Del mismo modo pruebas de sedimentación en columna fueron llevadas a cabo, a las mejores condiciones de operación, para determinar el tiempo de detención para la planta piloto. Estas condiciones fueron utilizadas para construir una planta piloto para tratar 15.14 L/min, la cual incluye una membrana de ósmosis inversa (0I). En la prueba de jarras, las mejores condiciones de remoción UNT con cero turbidez fueron alcanzadas por la combinación de Al2(SO4)3-NALCO 9907, a 100 min-1 y pH ácido. En la planta piloto fue requerido un tiempo de detención de 2 horas para remover el 100 % de los sólidos suspendidos en el tanque de sedimentación. La unidad de OI permitió el incremento de remoción de los sólidos totales disueltos a 96.1 % permitiendo una recuperación máxima de agua residual de casi 72 %. Los datos de la unidad de OI fueron exitosamente modelados mediante redes neuronales artificiales (ANN). Una red de cuatro capas alimentada hacia adelante con un algoritmo de propagación hacia atrás fue usada para entrenar todos los modelos de RNA. Los datos esperados y experimentales fueron bien correlacionados y fue alcanzado un coeficiente de determinación de 0.99.
Downloads
References
-[1] G. W. Miller, Integrated concepts in water reuse: managing global water needs, J.desal, Water Reuse Association (WRA), Elsevier, 187 (2006) 65-75. DOI: https://doi.org/10.1016/j.desal.2005.04.068
-[2] T. Asano and J.A. Cotruvo, Groundwater recharge with reclaimed municipal wastewater: health and regulatory considerations, J.watres, Elsevier, (2004). DOI: https://doi.org/10.1016/j.watres.2004.01.023
-[3] P.D. Saha and S. Dutta, Mathematical modeling of biosorption of safranin onto rice husk in a packed bed column using artificial neural network analysis, Desalination and Water Treatrnent, 41(2012) 308-314. DOI: https://doi.org/10.1080/19443994.2012.664718
-[4] M. Sadrzadeh, T. Mohammadi, J. Ivakpour, N. Kasiri, Neural network modeling of Pb2+ removal from wastewater using electrodialysis, Chemical Engineering and Processing: Process Intensification, Elsevier, 48 (2009) 1371-1381. DOI: https://doi.org/10.1016/j.cep.2009.07.001
-[5] United States Environmental Protection Agency (EPA), Water Recycling and Reuse: Toe Environmental Benefits, Water Division Region IX □EPA 909-F-98-001, Guidelines for Water Reuse, US EPA Office of Technology Transfer and Regulatory Support EPA/625/R-92/004, (September 2004).
-[6] J.P. Scott and D.F. Ollis, Integration of Chemical and Biological Oxidation Processes for Water Treatrnent: Review and Recommendations, Environ. Prog, AIChE, 14 (1995) 88-103. DOI: https://doi.org/10.1002/ep.670140212
-[7] S.H. Lin and C.M. Lin, Treatment oftextile waste effiuents by ozonation and chemical coagulation, J.watres, Elsevier, 27 (1993) 1743-1748. DOI: https://doi.org/10.1016/0043-1354(93)90112-U
-[8] P.P. Pathe, A.K. Biswas, N.N. Rao, S,N Kaul, Physicochemical Treatment of Wastewater from clusters of Small Scale Cotton Textile Units, Environ Technol, 26 (2005) 313-327. DOI: https://doi.org/10.1080/09593332608618562
-[9] M. Gomez, F. Plaza, G. Garralon, J. Perez, M.A. Gomez, A comparative study of tertiary wastewater treatment by physic-chemical-UV process and macrofiltration-ultrafiltration technologies, J.desal, Elsevier, 202 (2006), 369-376. DOI: https://doi.org/10.1016/j.desal.2005.12.076
-[10] T. Melin, B. Jefferson, D. Bixio, C. Thoeye, W. De Wilde, J. De Koning, J. Van der Graafand T. Wintgens, Membrane bioreactor technology for wastewater treatment and reuse, J.desal, Elsevier, 187 (2006) 271-282. DOI: https://doi.org/10.1016/j.desal.2005.04.086
-[11] A.L. Ahmad, S. lsmail, S. Bathia, Optimization of coagulation □ flocculation process for a palm oíl mili effiuent, using RSM; ENVIRON SCI TECHNOL, 39 (2005) 2828- 2834. DOI: https://doi.org/10.1021/es0498080
-[12] Q. Xu, A. Telukdarie, H.H. Lou, and Y. Huang, Integrated electroplating system modeling and simulation for near zero discharge of chemicals and metals, Ind. Eng. Chem. Res., 44(2005) 2156-2164. DOI: https://doi.org/10.1021/ie0495067
-[13] T.Y. Pai, Gray and neural network prediction of effluent from the wastewater treatment plant of industrial park, using influent quality, Environmental Engineering Science, 25 (2008). DOI: https://doi.org/10.1089/ees.2007.0136
-[14] F.G. Babuna, l. Kabdasli, S. Sozen, D. Orhon, Effiuent management for a metal finishing industry aiming zero discharge conditions, J Environ Sci Health A Tox Hazard Subst Environ Eng. 41 (2006) 1793-1806. DOI: https://doi.org/10.1080/10934520600778978
-[15] T.Y. Pai, Y.P. Tsai, H.M. Lo, C.H Tsai, and C.Y. Lin, Grey and neural network prediction of suspended solids and chemical oxygen demand in hospital wastewater treatment plant effluent; Computers & Chemical Engineering, Elsevier, 31 (2007) 1272-1281. DOI: https://doi.org/10.1016/j.compchemeng.2006.10.012
-[16] M.M. Hamed, M.G. Khalafallah, E.A. Prediction of waste water treatment plant using ANN, Environmental modeling & (2004) 919-928. Hassanien, performance software, 19 DOI: https://doi.org/10.1016/j.envsoft.2003.10.005
-[17] F.S. Mjalli, S. Al-Asheh, H.E. Alfadala, Use of artificial neural network black-box modeling for the prediction of wastewater treatment plants performance, J Environ Manage, Elsevier, 83 (2007) 329-338. DOI: https://doi.org/10.1016/j.jenvman.2006.03.004
-[18] H. R. Tashaouie, G.B. Gholikandi, H.Hazrati, Artificial neural networks modeling for predict performance of pressure filters in a water treatment plant, Desalination and Water Treatment, 39 (2012) 192-198. DOI: https://doi.org/10.5004/dwt.2012.3329
-[19] D. Hanbay, , Prediction of wastewater treatment plant performance based on wavelet packet decomposition and neural networks, Science Direct, Journal of Expert Systems with Applications, Elsevier, 34 (2008) 1038-1043. DOI: https://doi.org/10.1016/j.eswa.2006.10.030
-[20] N. Daneshvar, A.R. Khataee, N. Djafarzadeh, Toe use of artificial neural networks (ANN) for modeling of decolorization of textile dye solution containing C.I. basic yellow 28 by electrocoagulation process; J Hazard Mater, 137 (2006) 1788-1795. DOI: https://doi.org/10.1016/j.jhazmat.2006.05.042
-[21] A. Aleboyeh, M.B. Kasiri, M.E. Olya, and H. Aleboyeh, Prediction of azo dye decolorization by UV/H2O2 using artificial neural networks, DYE PIGMENT, Elsevier, 77 (2008) 288-294. DOI: https://doi.org/10.1016/j.dyepig.2007.05.014
-[22] A. R. Khataee, Photocatalytic removal of C.I. Basic Red 46 on immobilized TiO2 nanoparticles: Artificial neural network modeling, Environ Technol, 30 (2009) 1155-1168. DOI: https://doi.org/10.1080/09593330903133911
-[23] M.S. Noghabi, S.M. Ali Razavi, S.M. Mousavi, Prediction of permeate flux and ionic compounds rejection of sugar beet press water nanofiltration using artificial neural networks, Desalination and Water Treatment, 44 (2012) 8391. DOI: https://doi.org/10.1080/19443994.2012.691797
-[24] A. Kardam, K. Rohit Raj, J Kumar Arora, M. Mohan Srivastava, S. Srivastava, Artificial Neural Network Modeling for Sorption of Cadmium from Aqueous System by Shelled Moringa Oleifera Seed Powder as an Agricultural Waste, Journal of Water Resource and Protection, 2 (2010) 339-344. DOI: https://doi.org/10.4236/jwarp.2010.24039
-[25] K. Yetilmezsoy and S. Demirel, Artificial neural network (ANN) approach for modeling of Pb(II) adsorption from aqueous solution by Antep pistachio (Pistacia Vera L.) shells, J Hazard Mater, Elsevier, 153 (2008) 1288-1300. DOI: https://doi.org/10.1016/j.jhazmat.2007.09.092
-[26] M. Vyas, et al, Performance Forcasting of Common Effluent Treatment Plant Parameters by Artificial Neural Network, ARPN Journal of Engineering and Applied Sciences, 6 (2011) 38-42
-[27] M. Khayet, C. Cojocaru, M. Essalhi, Artificial neural network modeling and response surface methodology of desalination by reverse osmosis, Journal of Membrane Science, Elsevier, 368 (2011), 202-214. DOI: https://doi.org/10.1016/j.memsci.2010.11.030
-[28] L.A. Huchler, lmproved membrane filtration designs and equipment are revolutionizing utility systems, Mar Tech Systems, Inc., Lawrenceville, N.J., Hydrocarbon Processing ( 2008).
-[29] H. Huang,, Pretreatment for low pressure membranes in water treatment: A Review, American Chemical Society, Environ. Sci. Technol, 43 (2009) 3011-3019. DOI: https://doi.org/10.1021/es802473r
-[30] M. Henze, P. Harremoes, J. la Cour Jansen and E. Arvin, Wastewater Treatment, Biological and Chemical Processes, Third Edition, Springer-Verlag (2002). DOI: https://doi.org/10.1007/978-3-662-04806-1
-[31] L. Pawlowski, Psysicochemical Methods for Water and Wastewater Treatment, Elsevier Scientific Publishing Company inc., (1982).
-[32] T.D. Reynolds and P.A. Richards, Unit operations and processes in environmental engineering, PWS Publishing Company, (1995).
M.J. Anderson, P.J. Withcomb, DOE Simplified (Practical tools for effective experimentation, 2nd edition), Taylor & Framas Inc, (2007).
-[34] Metcalf & Eddy Inc., Waste water engineering, treatment and reuse, Me Graw Hill, (2003).
-[35] S.A. Martínez Delgadillo, M.G. Rodríguez Rosalez, Tratamiento de aguas residuales con MAT LAB, Editorial Reverté, Barcelona, (2005).
-[36] P.J. Braspenning, F. Thuijsman, A.J.M.M. Weijters, Artificial Neural Networks: An Introduction, Springer, (1995). DOI: https://doi.org/10.1007/BFb0027019
-[37] B.M. del Brío, A.S. Molina, Redes Neuronales y sistemas borrosos, Alfaomega Grupo editor, SA de CV, México, (2007).
-[38] Mathworks, MATLAB, Natick, Massachusetts, (2011): http://www.mathworks.com/products/matlab/
-[39] Instituto Mexicano de tecnología del agua (IMTA)/Comité Técnico de Normalización Nacional de Sistemas y Equipos de Riego: http://www.irnta.gob.mx/cotennser/index.php?option=com content&view=article&id=94&itemid=84
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2013 A. Salgado, E. Soto, R. Gómez, F. J. Cerino, R. B. García, M. T. Garza, J. A. Loredo , M. M. Alcalá
This work is licensed under a Creative Commons Attribution 4.0 International License.