Simulación de curvas de rompimiento con un modelo fenomenológico para describir la adsorción de Cu (II) y de Pb (II) en columna empacada de lecho fijo empleando isotermas de adsorción de Langmuir, Freundlich y Redlich - Peterson

Autores/as

  • J. Botello González Universidad Autonoma de Nuevo León
  • N.E Dávila Guzmán Universidad Autonoma de Nuevo León
  • F. J. Ceri no- Córdova Universidad Autonoma de Nuevo León

DOI:

https://doi.org/10.29105/qh11.03-297

Palabras clave:

balance de materia, Simulación gráfica, curvas de rompimiento, Adsorción, Metales pesaos

Resumen

Los metales pesados como el cobre y plomo son fuente de contaminación de forma natural y antropogénica y son considerados tóxicos a concentraciones superiores a los límites tolerables por el ser humano y representan un peligro para la salud dada sus características de acumulación, no biodegradabilidad y toxicidad. Las aportaciones del presente trabajo será la simulación gráfica en tres dimensiones para describir el proceso de adsorción dinámica en columna empacada con residuos sólidos sustentables de café modificados químicamente con ácido cítrico 0.6 M para la remoción de Cu (II) y Pb (II) resolviendo un modelo fenomenológico matemático considerando dispersión axial y adsorción en equilibrio basada en los modelos de isotermas de adsorción de Langmuir, Freundlich y Redlich - Peterson. Las gráficas obtenidas muestran concordancia con los resultados de mejor ajuste obtenidos en un estudio previo en lote entre los modelos estudiados, los cuales, se verifica con los coeficientes de regresión de cada uno de ellos; si sus coeficientes son similares, sus superficies también lo son.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

- [1] Oliveira, W.E., Franca, A.S., Oliveira, L.S., Rocha, S.D.: Untreated coffee husks as biosorbents for the removal of heavy metals from aqueous solutions. J Hazard Mater. 152, 1073-1081 (2008). https://doi.org/10.1016/;.jhazmat.2007.07.085 DOI: https://doi.org/10.1016/j.jhazmat.2007.07.085

- [2] Boonamnuayvitaya, V., Chaiya, C., Tanthapanichakoon, W., Jarudilokkul, S.: Removal of heavy metals by adsorbent prepared from pyrolyzed coffee residues and clay. Sep Purif Technol. 35, 11-22 (2004). https://doi.org/10.1016/51383-5866(03)00110- 2 DOI: https://doi.org/10.1016/S1383-5866(03)00110-2

- [3] Tokimoto, T., Kawasaki, N., Nakamura, T., Akutagawa, J., Tanada, S.: Removal of lead ions in drinking water by coffee grounds as vegetable biomass. J Colloid Interface Sci. 281, 56-61 (2005). https://doi.org/10.1016/;.¡cis.2004.08.083 DOI: https://doi.org/10.1016/j.jcis.2004.08.083

- [4] Utomo, H.D., Hunter, K. a.: Adsorption of heavy metals by exhausted coffee grounds as a potential treatment method for waste waters. e-Journal of Surface Science and Nanotechnology. 4, 504-506 (2006). https://doi.org/10.1380/ejssnt.2006.504 DOI: https://doi.org/10.1380/ejssnt.2006.504

- [5] Kyzas, G.Z.: Commercial coffee wastes as materials for adsorption of heavy metals from aqueous solutions. Materials. 5, 1826-1840 (2012). https://doi.org/10.3390/ma5101826 DOI: https://doi.org/10.3390/ma5101826

- [6] Dávila-Guzmán, N.E., de Jesús Cerino-Córdova, F.,Soto-Regalado, E., Rangel-Mendez, J.R., Díaz-Flores, P.E., Garza-Gonzalez, M.T., Loredo-Medrano, J.A.: Copper Biosorption by Spent Coffee Ground: Equilibrium, Kinetics, and Mechanism. Clea (Weinh). 41, 557-564 (2013). https://doi.org/10.1002/clen.201200109 DOI: https://doi.org/10.1002/clen.201200109

- [7] Davila-Guzman, N.E., Cerino-Córdova, F.J., LoredoCancino, M., Rangel-Mendez, J.R., Gómez-González, R., Soto-Regalado, E.: Studies of Adsorption of Heavy Metals onto Spent Coffee Ground: Equilibrium, Regeneration, and Dynamic Performance in a FixedBed Column. International Journal of Chemical Engineering. 2016, 1-11 (2016). https://doi.org/10.1155/2016/9413879 DOI: https://doi.org/10.1155/2016/9413879

- [8] Cerino-Córdova, F.J., Díaz-Flores, P.E., GarcíaReyes, R.B., Soto-Regalado, E., Gómez-González, R., Garza-González, M.T., Bustamante-Alcántara, E.: Biosorption of Cu(II) and Pb(II) from aqueoussolutions by chemically modified spent coffee grains. International Journal of Environmental Science and Technology. 10, 611-622 (2013). https://doi.org/10.1007/513762-013-0198-z

- [9] Cerino-Córdova, F.J., Díaz-Flores, P.E., GarcíaReyes, R.B., Soto-Regalado, E., Gómez-González, R., Garza-González, M.T., Bustamante-Alcántara, E.: ERRATUM: Biosorption of Cu(II) and Pb(II) from aqueous solutions by chemically modified spent coffee grains, (2013) DOI: https://doi.org/10.1007/s13762-013-0198-z

- [10] Botello-González, J., Cerino-Córdova, F.J., DávilaGuzmán, N.E., Salazar-Rábago, J.J., Soto-Regalado, E., Gómez-González, R., Loredo Cancino, M.: Ion Exchange Modeling of the Competitive Adsorption of Cu(II) and Pb(II) Using Chemically Modified Solid Waste Coffee. Water Air Soil Pollut. 230, 73 (2019). https://doi.org/10.1007/s11270-019-4106-0 DOI: https://doi.org/10.1007/s11270-019-4106-0

- [11] Al-Ghouti, M.A., Da'ana, D.A.: Guidelines for the use and interpretation of adsorption isotherm models: A review, (2020) DOI: https://doi.org/10.1016/j.jhazmat.2020.122383

- [12] Wang, J., Guo, X.: Adsorption isotherm models: Classification, physical meaning, application and solving method, (2020) DOI: https://doi.org/10.1016/j.chemosphere.2020.127279

- [13] Sag, Y., Kaya, a, Kutsal, T.: Lead, copper and zinc biosorption from biocomponent systems modelled by empirical Freundlich isotherm. Appl Microbiol Biotechnol. 53, 33841 (2000) DOI: https://doi.org/10.1007/s002530050031

- [14] Pagnanelli, F., Esposito, A., Veglio, F.: Multi-metallic modelling for biosorption of binary systems. Water Res. 36, 4095-4105 (2002). DOI: https://doi.org/10.1016/S0043-1354(02)00112-4

https://doi.org/10.1016/80043-1354(02)00112-4

- [15] Papageorgiou, S.K., Katsaros, F.K., Kouvelos, E.P., Kanellopoulos, N.K.: Prediction of binary adsorption

sotherms of Cu(2+), Cd(2+) and Pb(2+) on calcium alginate beads from single adsorption data. J Hazard Mater. 162, 1347-54 (2009). https://doi.org/10.1016/;.¡hazmat.2008.06.022 DOI: https://doi.org/10.1016/j.jhazmat.2008.06.022

- [16] Swayampakula, K., Boddu, V.M., Nadavala, S.K., Abburi, K.: Competitive adsorption of Cu (II), Co (II) and Ni (II) from their binary and tertiary aqueous solutions using chitosan-coated perlite beads as biosorbent. J Hazard Mater. 170, 680-689 (2009) DOI: https://doi.org/10.1016/j.jhazmat.2009.05.106

- [17] Tabaraki, R., Nateghi, A.: Multimetal biosorption modeling of Zn2+, Cu2+ and Ni2+ by Sargassum ilicifolium. Ecol Eng. 71, 197-205 (2014). DOI: https://doi.org/10.1016/j.ecoleng.2014.07.031

https://doi.org/10.1016/¡.ecoleng.2014.07.031 DOI: https://doi.org/10.1088/1475-7516/2014/07/031

- [18] Baig, K.S., Doan, H.D., Wu, J.: Multicomponent isotherms for biosorption of Ni2+ and Zn2+. Desalination. 249, 429-439 (2009). https://doi.org/10.1016/j.desal.2009.06.052 DOI: https://doi.org/10.1016/j.desal.2009.06.052

- [19] Langmuir, L: THE CONSTITUTION AND FUNDAMENTAL PROPERTIES OF SOLIDS AND LIQUIDS. PART 1. SOLIDS. J Am Chem Soc. 38, 2221-2295 (1916). https://doi.org/10.1021/ja02268a002 DOI: https://doi.org/10.1021/ja02268a002

- [20] Freundlich, H.: New Conceptions in Colloidal Chemistry. J Chem Educ. 4, 1202 (1927). https://doi.org/10.1021/ed004p1202.1 DOI: https://doi.org/10.1021/ed004p1202.1

- [21] Dorado, A.D., Gamisans, X., Valderrama, C., Solé, M., Lao, C.: Cr(III) removal from aqueous solutions: a straightforward model approaching of the adsorption in a fixed-bed column. J Environ Sci Health A Tox Hazard Subst Environ Eng. 49, 179-86 (2014). https://doi.org/10.1080/10934529.2013.838855 DOI: https://doi.org/10.1080/10934529.2013.838855

- [22] Treybal, R.E.: Mass-transfer operations. (1955)

- [23] Xu, Z., Cai, J., Pan, B.: Mathematically modeling fixed-bed adsorption in aqueous systems. Journal of Zhejiang University SCIENCE A. 14, 155-176 (2013). https://doi.org/10.1631/jzus.A1300029 DOI: https://doi.org/10.1631/jzus.A1300029

- [24] Crittenden, J.C., Trussell, R.R., Hand, D.W., Howe, K.J., Tchobanoglous, G.: MWH'”s Water Treatment: Principles and Design. (2012) DOI: https://doi.org/10.1002/9781118131473

- [25] Popa, M., Mamaliga, L, Petrescu, S., Teodora, E., Tudose, L: Axial Dispersion Study in Fixed Bed Columns. REVISTA DE CHIMIE. 66, 668-672 (015)

- [26] Cooney, D.O.: the Importance of Axial Dispersion in Liquid-Phase Fixed-Bed Adsorption Operations. Chem Eng Commun. 110, 217-231 (1991). https://doi.org/10.1080/00986449108939951 DOI: https://doi.org/10.1080/00986449108939951

- [27] Zhou, D., Zhang, L., Zhou, J., Guo, S.: Development of a fixed-bed column with cellulose/chitin beads to remove heavy-metal ions. J Appl Polym Sci. 94, 684— 691 (2004). https://doi.org/10.1002/app.20946 DOI: https://doi.org/10.1002/app.20946

- [28] Cooney, D.O.: Adsorption Design for Wasterwater Treatment. (1999)

- [29] Botello González, J.: Modelación matemática de la adsorción de Cu (II) Y Pb (II) con residuos sólidos de café modificados químicamente. (2019) Repositorio Institucional UANL, http://eprints.uanl.mx/18464/

- [30] Vijayaraghavan, K., Rangabhashiyam, S., Ashokkumar, T., Arockiaraj, J.: Assessment of samarium biosorption from aqueous solution by brown macroalga Turbinaria conoides. J Taiwan Inst Chem Eng. 74, 113-120 (2017). https://doi.org/10.1016/;.jtice.2017.02.003 DOI: https://doi.org/10.1016/j.jtice.2017.02.003

Descargas

Publicado

2022-12-06

Cómo citar

González, J. B., Guzmán, N. D., & no- Córdova, F. J. C. (2022). Simulación de curvas de rompimiento con un modelo fenomenológico para describir la adsorción de Cu (II) y de Pb (II) en columna empacada de lecho fijo empleando isotermas de adsorción de Langmuir, Freundlich y Redlich - Peterson . Quimica Hoy, 11(03), 34–40. https://doi.org/10.29105/qh11.03-297