Aislamiento de nanocelulosa 2D a partir de la pared celular de Sargassum spp
DOI:
https://doi.org/10.29105/qh11.04-307Palabras clave:
brown algae, two-dimensional (2D) nanocellulose, waste management, cellulose nanoplatelets, sargassoResumen
La nanocelulosa se ha convertido en un biopolímero importante para la obtención de empaques, fibra dietética y aditivos alimentarios, entre otros productos. En este trabajo, la nanocelulosa fue aislada a partir de sargazo a través de un proceso innovador de pasos sucesivos en un solo recipiente. El material obtenido fue caracterizado por FTIR, RMN, espectrofotometría UV Vis, microscopía de barrido láser y microscopía electrónica de barrido demostrando la presencia de nanoláminas de celulosa compuestas de nanofibras de celulosa con un espesor de 2100 nm. Finalmente, se preparó un film transparente el cual presentó una transmitancia del 81%.
Descargas
Citas
- [1].Abdul Khalil H, Tye Y, Saurabh C et al. (2017) Biodegradable polymer films from seaweed polysaccharides: A review on cellulose as a
reinforcement material. Express Polymer Letters 11:244- 265. doi: 10.3144/expresspolymlett.2017.26 DOI: https://doi.org/10.3144/expresspolymlett.2017.26
- [2].Anastasakis K, Ross A, Jones J (2011) Pyrolysisbehaviour of the main carbohydrates of brown macroalgae. Fuel 90:598-607. doi: 10.1016/5.fuel.2010.09.023 DOI: https://doi.org/10.1016/j.fuel.2010.09.023
- [3].Arnold A, Genard B, Zito F, Tremblay R, Warschawski D. and Marcotte I (2015). Identification of lipid and saccharide constituents of whole microalgal cells by 13C solid-state NMR. Biochimica et Biophysica Acta (BBA) Biomembranes 1848: 369-377. doi.org/10.1016/¡.bbamem.2014.07.017 DOI: https://doi.org/10.1016/j.bbamem.2014.07.017
- [4].Brownlee IL, Chater P, Pearson J, Wilcox M (2017) Dietary fibre and weight loss: Where are we now. Food Hydrocolloids 68:186-191. doi: 10.1016/j.f00dhyd.2016.08.029 DOI: https://doi.org/10.1016/j.foodhyd.2016.08.029
- [5].Chávez-Guerrero L, Vazquez-Rodriguez S, SalinasMontelongo J et al. (2019) Preparation of all-cellulose composites with optical transparency using the banana pseudostem as a raw material. Cellulose 26:3777-3786. doi: 10.1007/510570-019-02369-1 DOI: https://doi.org/10.1007/s10570-019-02369-1
- [6].Chávez-Guerrero L, Silva-Mendoza J, Toxqui-Terán A et al. (2021) Direct observation of endoglucanase fibrillation and rapid thickness identification of cellulose nanoplatelets using constructive interference. Carbohydrate Polymers 254:117463. doi: 10.1016/j.carbpol.2020.117463 DOI: https://doi.org/10.1016/j.carbpol.2020.117463
- [7].Chávez V, Uribe-Martínez A, Cuevas E et al. (2020) Massive Influx of Pelagic Sargassum spp. on the Coasts mof the Mexican Caribbean 2014-2020: Challenges and Opportunities. Water 12:2908. doi: 10.3390/w12102908 DOI: https://doi.org/10.3390/w12102908
- [8].Cui Q, Zheng Y, Lin Q et al. (2014) Selective oxidation of bacterial cellulose by NO2-HNO3. RSC Adv 4:1630- 1639. doi: 10.1039/c3ra44516j DOI: https://doi.org/10.1039/C3RA44516J
- [9].Cui Y, Gao S, Zhang R et al. (2020) Study on the Moisture Absorption and Thermal Properties of Hygroscopic Exothermic Fibers and Related Interactions with Water Molecules. Polymers 12:98. doi: 10.3390/polym12010098 DOI: https://doi.org/10.3390/polym12010098
- [10].Devault D, Pierre R, Marfaing H et al. (2020) Sargassum contamination and consequences for downstream uses: a review. Journal of Applied Phycology 33:567-602. doi: 10.1007/510811-020-02250-w DOI: https://doi.org/10.1007/s10811-020-02250-w
- [11].Doh H, Dunno K, Whiteside W (2020) Preparation ofnovel seaweed nanocomposite film from brown seaweeds Laminaria japonica and Sargassum natans. Food Hydrocolloids 105:105744. doi: 10.1016/j.f00dhyd.2020.105744 DOI: https://doi.org/10.1016/j.foodhyd.2020.105744
- [12].Flores-Jerónimo G, Silva-Mendoza J, Morales-San Claudio P et al. (2021) Chemical and Mechanical Properties of Films Made of Cellulose Nanoplatelets and Cellulose Fibers Obtained from Banana Pseudostem. Waste and Biomass Valorization. doi: 10.1007/s12649- 021-01377-2 DOI: https://doi.org/10.1007/s12649-021-01377-2
- [13].Gao H, Duan B, Lu A et al. (2018) Fabrication of cellulose nanofibers from waste brown algae and their potential application as milk thickeners. Food Hydrocolloids 79:473-481. dol: 10.1016/¡.f00dhyd.2018.01.023 DOI: https://doi.org/10.1016/j.foodhyd.2018.01.023
- [14].Kim S, Ly H, Kim J et al. (2013) Thermogravimetriccharacteristics and pyrolysis kinetics of Alga Sagarssum sp. biomass. Bioresource Technology 139:242-248. doi: 10.1016/j.biortech.2013.03.192 DOI: https://doi.org/10.1016/j.biortech.2013.03.192
- [15].Lee MK, Ryu H, Lee YJ et al. (2022) Potential Beneficial Effects of Sargassum spp. in skin aging. Marine drugs 20(8): 540. doi: 10.3390/md20080540 DOI: https://doi.org/10.3390/md20080540
- [16].Li J, Zhu Y, Wang C et al. (2020) Golden seaweed tides from beach inundations as a valuable sustainable fuel resource: Fast pyrolysis characteristics, product distribution and pathway study on Sargassum horneri based on model compounds. Algal Research 48:101888. doi: 10.1016/;.algal.2020.101888 DOI: https://doi.org/10.1016/j.algal.2020.101888
- [17].Mohamad Haafiz M, Hassan A, Zakaria Z et al. (2013) Physicochemical characterization of cellulose nanowhiskers extracted from oil palm biomass microcrystalline cellulose. Materials Letters 113:87-89. doi: 10.1016/¡.matlet.2013.09.018 DOI: https://doi.org/10.1016/j.matlet.2013.09.018
- [18].Mouritsen O, Rhatigan P, Cornish M et al. (2020) Saved by seaweeds: phyconomic contributions in times of crises. Journal of Applied bPhycology 33:443-458. doi: 10.1007/510811-020-02256-4 DOI: https://doi.org/10.1007/s10811-020-02256-4
- [19].Núñez-Carmona E, Bertuna A, Abbatangelo M et al. (2019) BC-MOS: The novel bacterial cellulose based MOS gas sensors. Materials Letters 237:69-71. doi: 10.1016/j.matlet.2018.11.011 DOI: https://doi.org/10.1016/j.matlet.2018.11.011
- [19].Park S, Baker JO, Himmel ME, Parilla PA, and Johnson DK (2010). Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnology for Biofuels 3:1-10. doi.org/10.1186/1754-6834-3-10 DOI: https://doi.org/10.1186/1754-6834-3-10
- [20].Ren Y, Linter B, Foster T (2020) Starch replacement in gluten free bread by cellulose and fibrillated cellulose. Food Hydrocolloids 107:105957. doi: 10.1016/¡.fo00odhyd.2020.105957 DOI: https://doi.org/10.1016/j.foodhyd.2020.105957
- [21].Schell J, Goodwin D, Siuda A (2015) Recent Sargassum Inundation Events in the Caribbean: Shipboard Observations Reveal Dominance of a Previously Rare Form. Oceanography 28:8-10. doi: 10.5670/0ceanog.2015.70 DOI: https://doi.org/10.5670/oceanog.2015.70
- [22]Sterner M, Edlund U (2016) Multicomponent fractionation of Saccharina latissima brown algae using chelating salt solutions. Journal of Applied Phycology 28:2561-2574. doi: 10.1007/s10811-015-0785-0 DOI: https://doi.org/10.1007/s10811-015-0785-0
- [23]Vásquez V, Martínez R and Bernal C (2019). Enzymeassisted extraction of proteins from the seaweeds Macrocystis pyrifera and Chondracanthus chamissoi: characterization of the extracts and their bioactive potential. Journal of Applied Phycology 31(3): 1999- 2010. doi.org/10.1007/s10811-018-1712-y DOI: https://doi.org/10.1007/s10811-018-1712-y
- [24]Wang M, Hu C, Barnes B et al. (2019) The great Atlantic Sargassum belt. Science 365:83-87. doi: 10.1126/science.aaw7912 DOI: https://doi.org/10.1126/science.aaw7912
- [25]Wargacki A, Leonard E, Win M et al. (2012) An Engineered Microbial Platform for Direct Biofuel Production from Brown Macroalgae. Science 335:308- 313. doi: 10.1126/science.1214547 DOI: https://doi.org/10.1126/science.1214547
- [26]Zhang T, Zhang Y, Wang X et al (2018) Characterization of the nano-cellulose aerogel from mixing CNF and CNC with different ratio. Materials Letters 229:103-106. doi: 10.1016/;.matlet.2018.06.101 DOI: https://doi.org/10.1016/j.matlet.2018.06.101